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1 

Introduction

 

How to Use This Book 

If you are reading this, you are probably trying to learn 

about physics. Whether you are preparing for a regular 

high school physics class or even an AP® Physics 

Exam, this is the perfect book for you. We have crafted 

a complete guide of every topic in classical mechanics 

which covers topics in kinematics (the physics of 

objects in motion) to Simple Harmonic Motion (the 

physics of oscillation in pendulums and springs). We 

have practice problems to accompany your learning 

journey in almost all our chapters and our guides are 

crafted to help highschoolers, middle schoolers, and 

anyone understand physics easier. We want to make 

learning physics easy for you so you can not only get an 

A in your class but also a 5 on your AP exam or an above 

average score!  

Our book is created by us, Rafi and Zenel. We are 

highschoolers who have had over 3 years of experience 

with physics and wanted this book to be the perfect 

addition to your arsenal to tackle physics. We know 

physics can be challenging to learn but we are here to 

make it not only easier for you to learn and understand, 

but something that is actually fun to learn and pursue 

in the future. Let’s learn and enjoy physics together!  

Each chapter rigorously challenges you with unique 

ways of learning through visual diagrams, fun practice 
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problems, and a perfect content review to teach you in 

the easiest to understand format. 
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1.1 

Introduction 

 

Significant Figures 

What are significant figures? Well, sig figs (short for 

significant figures) are a measurement of how precise 

or certain a measurement is. For example, let's look at 

a glass of water. We can say that the glass contains 1.5 

liters of water, but how are we certain that it is exactly 

1.5 liters? It is nearly impossible for this glass to 

contain exactly 1.5 liters, so we take it as an 

approximation due to the tools available to us, like a 

measuring cup. This is where sig figs come into play. 

Essentially, sig figs tell us how certain our measured 

value is, we can say that the measured amount of water 

in our cup is 1.5 liters measured to 2 sig figs but if we 

were to have a more precise measuring cup, we could 

measure to 3 sig figs, 4 or even more depending on how 

accurate of a measuring tool we have. Let's say we have 

a measuring cup that can measure up to 4 significant 

figures, we could measure to see that the amount of 

water in our cup is 1.532 liters! Wow, this is a lot more 

water than we initially thought with only the 2 sig figs 

from before and this can be crucial when we want to be 

extremely precise in our calculations. So how do we 

know how many sig figs we have? There are 6 sig fig 

rules you must know, which are easy to remember! 
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Rule #1 - All non-zero digits are significant. 

What does this mean? In any number, excluding 

decimal places, every non-zero digit is considered a 

significant figure. 

Example: 1,234 = 4 sig figs 

Example: 2,342,423 = 7 sig figs 

 

Rule #2 - Zeros in the middle of non-zero numbers 

are significant. 

What does this mean? Any number that has zeros in 

between numbers will have zeros which are 

significant. 

Example: 5.008 = 4 sig figs 

Example: 101 = 3 sig figs 

 

Rule #3 - Zeros after the decimal place are 

significant. 

What does this mean? Any zero after the decimal 

point is considered a significant figure a.k.a trailing 

zeros are significant AFTER the decimal point. 

Example: 43.000 = 5 sig figs 

Example: 829.98300 = 8 sig figs 
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Rule #4 - Zeros and coefficients in scientific notation 

are significant. 

What does this mean? The zeros in scientific notation 

are significant figures. 

Example: 8.0 x 103 = 2 sig figs 

Example: 6.022 x 1012 = 4 sig figs 

 

Rule #5 - Leading or beginning zeros are NOT 

significant. 

What does this mean? Any zero before other non-zero 

numbers are not significant, even if they are after or 

before a decimal point. However, if there is a number 

before the zeros, then the zeros ARE significant.  

Example: 0.004 - 1 sig fig 

Example: 1000.04 - 6 sig figs 

 

Rule #6 - Zeros in a large number without a decimal 

are NOT significant. 

What does this mean? If there is a large whole 

number (a number without decimal places) that has 

zeros at the end with no other whole number, then the 

zeros are not sig figs. 

Example: 4000 = 1 sig fig 

Example: 52,342,000 = 5 sig figs 
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Try it on your own: 

How many sig figs do these numbers have: 

 

1. 4.0283000 = _______________ sig figs 

 

2. 98.0002 = _______________ sig figs 

 

3. 291392 = _______________ sig figs 

 

4. 1,952 x 1013 = _______________ sig figs 

 

5. 0.002 = _______________ sig figs 

 

6. 102,000 = _______________ sig figs 
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Answers:  

1. 8 sig figs - Rule #3 - Zeros after the decimal are 

significant 

 

2. 6 sig figs - Rule #2 - Zeros in the middle of non-

zero numbers are significant 

 

 

3. 6 sig figs - Rule #1 - All numbers that are not 

zero are significant 

 

4. 4 sig figs - Rule #4 - Zeros and coefficients in 

scientific notation are significant 

 

 

5. 1 sig fig - Rule #5 - Leading or beginning zeros 

are NOT significant 

 

6. 3 sig figs - Rule #6 - Zeros in a large number 

without a decimal are NOT significant. 

 

Well now we know about the basic rules of significant 

figures, let's learn about addition, subtraction, 

multiplication and division using sig figs, it’s very 

simple! 
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Adding & Subtracting - Look for the number with 

the LEAST number of decimal places. 

What does this mean? Look for the number with the 

least number of decimal places and this will be the 

number of decimals we will round to. 

Example: 2.34 + 5004 + 481.44 = 5487.78 

⬆ Zero decimal places, round 

number to 0 decimal places 

5487.78 ≈ 5488 (round up) 

Example: 5.82 + 98.213 + 43.1 = 147.133 

⬆ 1 decimal place, round 

number to 1 decimal place 

147.133 ≈ 147.1 (round down) 

 

Multiplying & Dividing - Look for the LEAST 

amount of sig figs. 

What does this mean? We will round to the amount of 

sig figs as the factor with the least amount of sig figs. 

Example: 24.5 ⨯ 63.2751 = 1550.23995 

                 ⬆ 3 sig figs ⬆7 sig figs = the least amount of 

sig figs is 3, we will round the answer to 3 sig figs  

1550.23995 = 9 sig figs = round to 3 sig figs (starting 

from the leftmost digit)  

1550 = 3 sig figs 
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Example: 102.02 / 72.4 = 1.4091160221 

                  ⬆ 5 sig figs ⬆3 sig figs = the least amount of 

sig figs is 3, we will round the answer to 3 sig figs 

1.4091160221 = 11 sig figs = round to 3 sig figs 

(starting from the leftmost digit) 

1.41 = 3 sig fig 

 

Try it on your own:  

Round your answers to each equation to the correct 

number of sig figs (calculator allowed): 

 

1. 382.87 + 782.356 + 23.4 + 76,292.9887 ≈  

 

_______________ 

 

2. 87.34 ⨯ 928.22 ⨯ 987.233 ≈  

 

_______________ 

Challenge Question: 

452.64 ⨯ 2342.23 ÷ 456.23 + 623.52 + 82.4 ≈  

 

_______________ 
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Answers:  

77481.6 - The lowest number of decimal places in any 

of the addends is just 1, so round the answer 

(77481.6147) to 1 decimal place 

80040000 - The lowest number of sig figs in any of the 

factors is 4 (87.34), so round the answer 

(80035704.7288) to 4 sig figs 

3029.72 - Split this question into 3 parts, make sure to 

use P.E.M.D.A.S (or any other acronym for the order of 

operations) first multiply 452.64 and 2342.23, round 

to the correct number of sig figs (5 sig figs) so you will 

get 1,060,200. Next divide 1,060,200 by 456.23, again 

round to the correct number of sig figs (5 sig figs). You 

will get 2323.8. Now for the final step, add 2323.8 to 

623.52 and 82.4 using the addition rule for sig figs. You 

will round to 1 decimal place and your final answer will 

be 3029.72. Our answer without using sig fig rules 

would be 3029.71937137 which is close to our answer 

using the sig fig rules.  

 

Now you are equipped to tackle any physics, 

mathematics, chemistry, or other class that involves 

significant figures. However, you likely won't need to 

use significant figures extensively in high school 

physics classes, as the process can be tedious. It's 

generally sufficient to round your answers to 2 or 3 

decimal places when you encounter decimals. 
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1.2 

Introduction 

 

Significant Units 

In order to understand our universe, we need a way to 

measure physical quantities, like mass, time and 

distance. Without a standard value to quantify 

measurements, it becomes nearly impossible to give 

meaning to physical quantities – imagine having to tell 

someone how long something takes without using 

standard values of time, such as seconds or minutes. 

It’s like your friend saying, “I will be at your house in 

15 bananas.” To your friend bananas may be equal to 

15 minutes but to you, you have no idea!  With this in 

mind, scientists sought out to create standard, physical 

constants, which we now call units.  

 

These units are standard, people from Germany to 

Mozambique and across the world use the same units. 

This ensures that there is no confusion between ways 

of measuring values and these values will not change 

throughout time. These units were measured 

differently before, for example a second was equal to 

1/86,400 of a day, but as the Earth’s rotation slows 

down, this value is changing, as a result scientists 

changed what exactly a second is equal to and now the 

value is standardized to something constant.  
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All measured quantities can be expressed by 

fundamental units, units which are not dependent on 

any other. These fundamental units are the meter, the 

second, the kilogram, the ampere, the mole, the kelvin 

and the candela. In this book, we will only observe the 

meter, the second, and the kilogram but the other units 

are still very important in higher level physics courses. 

 

The meter (m) is the unit representing distance. Using 

the meter, we can quantify the length between two 

points. For example, the length of a football field is 

109.7 meters, which is the distance between one side of 

the field to another. The meter is defined as the 

distance light travels within 1/299,792,458th of a 

second. The second (s) is the unit representing time. 

With the second, we can observe time which has 

passed. Seconds are defined to be the time it takes for 

Cesium to vibrate 9,192,631,770 times. The kilogram 

(kg) is the unit representing mass. Mass is defined to 

be a measure of inertia, which will be further explained 

in Chapter 3, but for now think of it as how heavy 

something is. The kilogram is defined in terms of the 

Planck constant, the speed of light and the second. The 

Planck constant is used in quantum mechanics. These 

are all ideas we will be discussing throughout our book, 

and we will learn about other units along the way! 

 

Scientists often must deal with extremely large or 

extremely miniscule quantities, to the point where it is 

inconvenient to represent these quantities using these 
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base units – which is why we have developed ‘metric 

prefixes.’ These prefixes are in factors of ten, like how 

a gram is 10-3 of a kilogram, or how a kilometer is 103 

of a meter. This allows us to conveniently describe 

these physical quantities and use them in calculations. 

Below we have included a convenient table to help you 

convert between some of the common prefixes. 

Prefix: Magnitude: Symbol: 

peta 1015 P 

tera 1012 T 

giga 109 G 

mega 106 M 

kilo 103 k 

hecto 102 h 

deka 101 da 

(N/A) 1 (N/A) 

deci 10-1 d 

centi 10-2 c 

milli 10-3 m 

micro 10-6 μ 

nano 10-9 n 

pico 10-12 p 

femto 10-15 f 

People often must convert units across these 

magnitudes, which is why they have developed an 

intuitive and easy way to do so – dimensional analysis. 
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Dimensional analysis begins by finding the units that 

you want to convert, so for example, let's use the gram 

and the kilogram. Now, we need to find the ratio 

between these units, or in other words, how many 

grams are in a kilogram. Using the table, we can see 

that there are 1000 grams in 1 kilogram. Finally, we can 

set up our final dimensional analysis equation. For 

this, we will use 50 grams as an example, but any value 

will work.  

50 𝑔 ×
1 𝑘𝑔

1000 𝑔
= 0.05 𝑘𝑔 

Let’s examine what happened a little closer. We take 

our initial value with its units, grams, and multiply it 

with the ratio between the two units, which are 

kilograms and grams. The grams cancel each other out, 

leaving us with just the kilograms and a simple 

mathematical equation: 
50

1000
. This gives us our final 

answer of 0.05 kilograms.  

Try it on your own: 

Use the chart to convert the following units: 

1. 46 kilometers = __________ meters 

2. 923 nanoseconds = _________ microseconds 

3. 67 hectograms = __________ megagrams 

4. 58924712 picometers = ________ dekameters 
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Answers: 

46000 meters 

0.923 microseconds 

0.0067 megagrams 

0.0000058924712 dekameters 
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1.3 

Introduction 

 

Coordinate System 

Graphs are a convenient way to represent relationships 

between quantities. But in order to use graphs, we need 

to set one up first! You might be wondering; how do we 

do that? Well, it all starts with one point. We will name 

this point the origin, and everything that will be 

represented in this graph will be in respect to it. The 

coordinates of the origin are (0,0).  

 

Coming out of the origin point are axes. An axis is a 

number line which goes on forever in both directions. 

Typically, there are two axes: the x-axis, or horizontal 

axis, and the y-axis, or the vertical axis.  

What does each of these represent? The x-axis 

represents something called an independent variable. 

The value of an independent variable is not affected by 

the change of another variable. For example, the 

amount of light a plant receives. The y-axis represents 

a dependent variable. Dependent variables are 

dependent on the independent variable, their value is 

determined by the value of the independent variable. 

Going off the previous example, the dependent variable 

would be the height of the plant. In physics, we often 
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observe how quantities change over time, so it is 

extremely common for the x-axis to be time and the y-

axis to be another value dependent on time such as 

distance traveled, temperature and speed. 

 

Finally, we need to determine which ‘direction’ of the 

axes are positive and negative. In math class, we 

consider positive to be upwards or rightwards 

depending on the axis, and negative to be downwards 

or leftwards, again, depending on the axis. However, in 

physics, it may be more convenient to play around with 

these directions, like making downwards on the y-axis 

positive and upwards negative, like when you’re 

dealing with falling objects. Since they’re only moving 
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downwards, it’s more convenient to represent those 

values as positive than strictly negative values. This is 

not necessary, but it can definitely be of use! 

 

Although creating a coordinate system is common 

knowledge, it is important to lay a solid foundation and 

understanding, that way we can avoid confusion in the 

future. 
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1.4 

Introduction 

 

Vectors & Scalars 

Vectors and Scalars are something you will constantly 

be hearing throughout this book, but what are they? 

Vectors and scalars are two different ways to represent 

quantities. For example, you may look at the 

speedometer of your car on the highway and it says “60 

mph.” This is a quantity but is it a scalar or a vector? 

Well, here is the difference: 

Scalars - Quantities that ONLY have Magnitude (an 

amount of something) 

Vectors - Quantities that have BOTH Magnitude and 

Direction 

 

For our example above, 60 mph (miles per hour) is a 

quantity with a magnitude, or an amount of something, 

in our case speed. There is no mention of which 

direction the car is traveling so it is not a vector. So how 

can we represent our car’s speed with a direction a.k.a 

turning our scalar into a vector? It’s simple! Add a 

direction into the value, instead of just 60 mph, we can 

say 60 mph north, east, southeast, etc. Now we have a 

magnitude and direction, our quantity is now a vector. 

This is especially important when we talk about specific 

variables in physics. Take for instance speed and 



A High Schooler’s Guide to Physics 

[29] 
 

velocity, speed is the scalar version of velocity. Speed 

has no direction whereas velocity does. That’s why you 

may see the symbol for velocity (v) represented with an 

arrow pointing to the right (�⃗�) which means it is a 

vector quantity known as velocity. Speed is usually just 

represented as (v) since without the vector symbol it is 

not a vector quantity.  

 

Here are some examples of scalar quantities: 

Mass, speed, distance, time, energy, density, volume, 

temperature, distance, work 

Here are some examples of vector quantities: 

Force, displacement, velocity, acceleration, 

momentum, friction, weight 

 

Now that we know what vectors and scalars are, let’s 

talk about one of the most important differences 

between a scalar and vector quantity, distance vs 

displacement. What is distance? Distance is the total 

length an object has moved from its starting position to 

its final position. We represent distance using (d). 

Since there is no vector symbol, we know that this is a 

scalar value, what does this mean in this context? It’s a 

scalar, distance has no direction, so you won’t say “15 

meters east” but rather just “15 meters.” Remember it’s 

the TOTAL change in position of an object from its 

starting position. Now you may be wondering, what is 

displacement? They sound similar and honestly have a 
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very similar meaning, but they are two completely 

different ideas. Displacement is the value of how much 

an object has moved as compared to its starting 

position. It is NOT THE TOTAL amount it is moved 

but rather the shortest distance from its starting 

position to its final position. We represent 

displacement using (𝛥�⃗�) and since you see the vector 

symbol, we know it is a vector quantity which has a 

direction. We use the Greek letter “Δ” (delta), which 

means change in, to help us represent this value. For 

this we will not say  

“15 meters” like we did for representing distance, we 

will instead say “15 meters northeast.” This still may be 

confusing so here’s another example: 

A car travels 3 meters north then it takes a sharp right 

turn and travels 4 meters east. Find the car’s distance 

traveled and displacement. 

Here we can draw a diagram to help us. Remember to 

use your rules of the coordinate system! 
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To find the total distance the car has traveled is very 

simple, we just add up how far the car traveled. 

3 meters north + 4 meters east = 7 meters. The 
distance traveled = 7 meters 
 
Finding the displacement is a little tricky, remember, 
displacement is the shortest path from the starting 
position to the final position. Does the movement of the 
car seem familiar? Yes, it should, it resembles a 
triangle! If we remember from geometry class, the 
shortest path between the two points, the origin and 
the end position, is the hypotenuse. The equation to 
find the length of the hypotenuse is Pythagorean’s 
Theorem which is (a2+b2=c2) where a and b represent 
one leg of the triangle and c represents the hypotenuse. 
To solve for the hypotenuse, or the displacement, let’s 
plug in the values of a and b. (32 + 42 = c2) This equals 
to (9 + 16 = c2) which then equals to c2 = 25. Square 
rooting on both sides gives us our final answer as 5. 
This means that the displacement of the car was 5 
meters, but don't forget, displacement is a vector 
quantity which means we need a direction! Since the 
car traveled North and then East, with respect to the 
starting position, we can say that the final 
displacement is 5 meters North-East. 
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Try it on your own: 

1. A man is running in a track meet, he must run 

the track for 4 full laps and return to his starting 

position. The length of one lap is 400 meters. 

What is the man’s distance traveled and 

displacement? Answer in terms of kilometers.  

 

 

 

 

 

 

 

Distance: _______________ meters 

Displacement: _______________ meters 
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2. A rocket ship is launching towards Mars, it 

begins on Earth and travels to Mars, the captain 

of the ship wants to go farther, he turns the 

thrusters on and goes towards Jupiter but stops 

halfway. The captain directs the ship back to 

Mars. What is the distance and displacement 

traveled in meters? Assume that the distance 

between Earth and Mars is 3.6 x 1011 meters, the 

distance between Mars and Jupiter is 5.5 x 1014 

meters and assume that the planets do not orbit 

and are in a straight line starting with Earth 

then Mars and then Jupiter from left to right.  

 

 

 

 

 

 

 

Distance: _______________ meters 

Displacement: _______________ meters 
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3. Sir Isaac Newton wants to fish for a big fish. He 

decides to cast his reel 5 meters north of the 

pier, he has no luck and decides to cast it 3 

meters east of his previous spot, again he has no 

luck. He casts his reel 10 meters north from the 

pier where he finally catches his dinner for the 

evening! How far did the fishing line travel 

throughout his struggles in terms of distance 

and displacement, answer in meters. Assume he 

had to reel the fishing line back to the pier every 

time.  

 

 

 

 

 

 

Distance: _______________ meters 

Displacement: _______________ meters 

  



A High Schooler’s Guide to Physics 

[35] 
 

Answer Key: 

1. Distance: 1.6 km  

Displacement: 0 km 

Explanation: The man must run the track for 4 laps, 

each lap is equal to 400 meters. To find the total 

distance traveled we multiply 4 by 400 to get 1,600 

meters. Now we must do unit conversions, 1 km is 

equal to 1,000 meters. We can divide 1,600 meters by 

1,000 meters to get our answer of 1.6 km. Now to find 

the displacement, since the starting position and the 

final position are the exact same, the person hasn’t 

moved at all from his starting position! This means that 

the person hasn’t been displaced at all and we get 0 km 

of displacement.  

2. Distance: 5.5036 x 1014 meters 

Displacement: 3.6 x 1011 meters to the right (or east) 

Explanation: Let’s split this question up into parts, let’s 

try to comprehend what it is saying. The captain first 

travels to Mars from Earth, which is 3.6 x 1011 meters. 

Then, he travels half-way to Jupiter, the distance 

between Mars and Jupiter is 5.5 x 1014 meters. To find 

half the distance we can divide 5.5 x 1014 by 2. We get 

2.75 x 1014. Then, the captain turns around and returns 

to Mars. This is the same distance he just traveled 

which is 2.75 x 1014. To find the total distance we can 

add all these values together. For all the exponents to 

be equal to 14 we must convert 3.6 x 1011 to a value x 

1011 to do so we can move the decimal place of 3.6 until 

its value can be multiplied by 11014. We now get    
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0.0036 x 1014. Now that all the exponents are equal, we 

can add the values.  

0.0036 x 1014 + 2.75 x 1014 + 2.75 x 1014 = 5.5036 x 1014.  

The total distance traveled by the rocket ship is  

5.5036 x 1014 meters.  

To find the displacement we take the shortest distance 

between the origin and the final position. The final 

position is just Mars, since the distance between Earth 

and Mars is 3.6 x 1011 meters our displacement is         

3.6 x 1011 meters. However, we also need direction. 

Since the planets are ascending from left to right 

(Earth, Mars, Jupiter) we can say that the direction is 

right or east, and our final displacement is 3.6 x 1011 

meters to the right or east. 

3. Distance: 46 meters 

Displacement: 0 meters 

Explanation: To find the total distance the line has 

traveled let’s look at the question piece by piece. First 

it is cast 5 meters, then reeled back 5 more meters, then 

cast 5 meters again and 3 meters, it returns that same 

distance, so 8 more meters, and finally it is cast 10 

meters away and returns 10 meters. Let’s add up all the 

distances for our total distance.  

5 + 5 + 5 + 3 + 8 + 10 + 10 = 46 meters of distance. For 

the displacement the final position is the pier which is 

our origin which means there is no displacement. 
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1.5 

Introduction 

 

Vector Addition 

We have talked about vectors, and we learned how to 

use them to determine the distance or displacement of 

any object but how can we add vectors? Well, we 

already started doing this when we used the 

Pythagorean Theorem to find the length of the 

hypotenuse. We use something called the “Head to 

Tail” method to add vectors and to find the “resultant 

vector.” This resultant vector is essentially the 

displacement of an object, and we already experienced 

an example of this in the vectors & scalars unit. To 

answer this question, we need to use the rules of vector 

addition and implement the “Head to Tail” method. So, 

what is the Head to Tail method? The Head to Tail 

method states that to add two vectors together we place 

the tail (or the non-arrowhead) of the 2nd vector to the 

“head” (the arrowhead) of the first vector.  
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Let’s draw a diagram to wrap our heads around this 

concept. 

 

Here you can see two vectors, vector 1 and vector 2. To 

add these two vectors together, we take the tail (the 

side of the vector without an arrowhead) of vector 2, 

add place it on top of the head (the side of the vector 

with an arrowhead) to find our resultant vector. 

 

As you can see, we moved the tail of vector 2 to the head 

of vector 1 and we discovered our resultant vector. 
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The head to tail method isn’t only for horizontal or 

vertical vectors, we can also use it for vectors placed at 

an angle as shown below. 

 

Here we have two vectors placed at an angle; to find the 

resultant vector we use the same method as before; we 

place the tail on the head of vector 1. 
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Now that we know about vector addition, let’s move on 

to vector subtraction! Let’s think of subtraction in a 

new way, you aren’t “removing” a value but rather you 

are adding the negative of that number. For example, 

we know that 5 minus 2 is equal to 3, but we can also 

think of it as 5 plus negative 2 is equal to 3. This is 

essentially what we are doing when we are doing vector 

subtraction. Instead of “subtracting a vector” we are 

“adding its negative” by negative we do not mean the 

negative value of the vector but rather the negative or 

“opposite direction” of the vector. Let’s draw a diagram 

to better help us understand this idea:  

 

Here we have two vectors, one pointing right (vector 1) 

and one pointing left (vector 2). To subtract these two 

vectors (or technically speaking add them together) we 

use the Head to Tail method! 
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The resultant vector is smaller than vector 1 and it will 

be pointing to the right side. 
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Chapter 2 

 

Kinematics 
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2.1 

Kinematics 

 

Position and Velocity Over Time 

Kinematics is the study of the motion of objects. These 

objects may stay stationary, speed up, slow down, or 

move at a constant rate. One of the most integral parts 

of kinematics is observing an object’s position over 

time – so how do we do that?  

When we talk about position, we mean the shortest 

distance between two points: the origin and the object  

Does this sound familiar? It is the same as 

displacement. Position and displacement are two 

words for the same idea! 

For example, if your house is the origin and your school 

is 1000 meters away from your house, then your 

school’s position is 1000 meters. But 1000 meters 

where? East? West? This is why position is a vector, it 

has a direction. When we talk of an object’s position, 

we also speak of the direction of it relative to our 

reference point, or the origin.  

Now that we understand what position is, take a look 

at any still object for a couple seconds. Its position did 

not move for the entirety of the time we were observing 

it. So how can we represent this information on a 

graph?  
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Let’s set up our graph first. We need to define our two 

axes. The variables we are comparing are ‘time’ and 

‘position’. Since the passage of time does not depend 

on the position of the object, we will choose it to be 

represented by the x-axis and position to be 

represented by the y-axis. We will also need a scale for 

our graph, so let’s make each interval on the x-axis 

worth one second and each interval on the y-axis worth 

0.25 meters.  

We said that the position of the object is the same 

throughout, but what is it? That all depends on the 

origin that you chose. The object could be its own origin 

point, but for simplicity's sake let’s choose a nearby 

object that is 0.5 meters to the right, meaning that 

relative to that object, the object we are looking at has 

a position of 0.5 meters horizontally. 

Now that we know the value for position and have our 

graph set up, we can represent the position of the 

object over time. Plot the object’s position for each 

second that passes. Eventually, when you have done 

this for a couple of seconds, you will find that the points 

all have the same y-coordinate 
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.  

Connecting all the points gives us a straight line at           

y = 0.5, meaning that the object's position will always 

be 0.5 despite the passage of time. 

 

What about an object whose position changes over 

time?  

Let’s look at an object whose position changes by 0.5 

meters every second. If we plot a point for this object’s 

position every second, it should look something like 

this:  
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As you can see, we have a linear line with a constant 

slope. The slope of this line is incredibly important, as 

it is the velocity of the object. Velocity is a measure of 

how much an object is displaced every second and it is 

a vector quantity. We can find the velocity by 

measuring the change of position and dividing it by the 

change of time. Since the position changes 0.5 meters 

each second, then our velocity is 0.5 m/s.  

We can also take velocity and graph it over time as well! 

But why should we? Well, doing so allows us to 

investigate the velocity, and tells us about the 

displacement of the object and the acceleration… which 

we’ll speak more about in the next section.  

Since the slope of the line is constant in the first graph, 

then this means that the velocity is constant as well. 

But what does this graph tell us about the displacement 

and the acceleration of the object? Let’s take a closer 

look. If we take the area under the velocity line, this 

gives us the total displacement of the object. But why is 
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that? We know that velocity is the change of position 

divided by the change of time, and if we multiply the 

change of time with this, we end up with just the 

change of position – displacement! This ends up being 

a useful tool for us if we want to find the displacement 

but are just given the velocity.  

Well now you may wonder, what is acceleration? Let’s 

find out in the next chapter! 
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2.2 

Kinematics 

 

Acceleration 

Vroom vroom… When we are in a car and the driver 

presses the gas pedal the car moves faster and faster. 

Its velocity increases, and as a result, there is a change 

in the velocity over a certain period of time. This 

change in velocity over time is called acceleration. 

Acceleration describes how much an object speeds up 

over a period or the rate of change of its velocity. We 

write acceleration with the symbol “a: and its equation 

is 𝑎 =
𝛥𝑣

𝛥𝑡
. As you can see acceleration is equal to the 

change in velocity over the change in time or it can also 

be written as 𝑎 =
(𝑣𝑓−𝑣𝑖)

𝛥𝑡
. Essentially all we do to find 

the acceleration is take the final velocity and subtract it 

from the initial velocity and then divide it by the time 

it takes to reach the final velocity. The units are m/s2 

also known as meters per second per second. We can 

better understand acceleration by seeing an example of 

it. Let's take a look: 

A car travels at a constant velocity on the freeway until 

the cops start to approach the driver, the driver hits the 

gas and speeds up from 5 m/s to 15 m/s in 10 seconds! 

What was the driver’s acceleration? 
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To answer this question let's use our new equation. The 

final velocity of the car was 15 m/s, and its initial 

velocity was 5 m/s. So 𝑣𝑓  = 15 m/s and 𝑣𝑖 = 5m/s. The 

car speeds up in a period of 10 seconds so Δt = 10 s. 

When we solve the equation 𝑎 =
(15𝑚 𝑠⁄ −5 𝑚∕𝑠)

10 𝑠
 , we get 

an answer of 1 m/s2 which means the car’s velocity 

increases by 1 m/s every second.  

Acceleration is very important as it is a way to model 

the change in an object’s velocity. Since velocity is a 

vector, it has a magnitude and direction which means 

if acceleration changes either its direction or 

magnitude can change. If an object is moving 10 m/s 

east but then it starts moving 10 m/s west in 2 seconds, 

there is a change in the acceleration.  

Let’s solve a problem to help us understand. When we 

graph such a scenario, we usually label east to be the 

positive x-axis (+x) direction and west to be the 

negative x-axis (-x) direction. So, we can write 𝑣𝑓  as         

-10 m/s and 𝑣𝑖 as 10 m/s. Once we plug it into our 

equation, we get 𝑎 =
(−10 𝑚 𝑠⁄ −10 𝑚∕𝑠)

2 𝑠
, our answer is -10 

m/s2. If we didn’t consider direction, we would get a 

totally different answer so make sure you always 

consider direction when you work with acceleration! 

We will understand later with circular motion why the 

direction being considered for acceleration is so 

significant. 
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Try it on your own: 

1. Alfred likes to run so he begins his day with a 

simple jog going at 2 m/s for 10 seconds. He 

suddenly begins to speed up to a speed of 5 m/s 

in just 8 seconds. What was his acceleration 

during the period he sped up? 

 

 

 

 

 

Acceleration: _______________ m/s2 

2. John is in his new Lamborghini Huracán 

cruising down the freeway at 25 m/s. He 

suddenly sees a police officer tailing him, so he 

begins to press on the gas pedal accelerating to 

a speed of 67 m/s! The Lamborghini is very 

powerful and speeds up in just 7 seconds! What 

was the acceleration of John and his 

Lamborghini? 

 

 

 

 

Acceleration: _______________ m/s2 
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3. A runner is running a 1k race, he begins at a pace 

of 5 m/s and slows down to 3 m/s in 2 seconds. 

He continues running at this speed for 2 

minutes until it’s the last 100 meters of the race 

where he speeds up to 15 m/s in 4 seconds. What 

was the runner's acceleration during the 3 

periods of time when he is running? 

 

 

 

Acceleration from 5 m/s to 3 m/s: Acceleration:  

_______________ m/s2 

 

 

 

Acceleration during 2-minute interval: 

Acceleration:  

_______________ m/s2 

 

 

 

Acceleration from 3 m/s to 15 m/s: 

Acceleration:  

_______________ m/s2 
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Answer: 

1. To solve this problem, we can simply just plug the 

values into our equation for acceleration. Be careful! 

Since it says that Alfred speeds up in 8 seconds the 

change in time for the equation is 8 seconds NOT 10 

seconds as there was no change in velocity during those 

10 seconds. 𝑎 =
(5 𝑚 𝑠⁄ −2 𝑚/𝑠)

8 𝑠
. We get our final 

acceleration as 0.375 m/s2. 

2. For this question, we can do the same thing again, 

let's plug the values into our equation                                                

𝑎 =
(67 𝑚/𝑠−25 𝑚/𝑠)

7 𝑠
.  We get about 5.71 m/s2! 

3. This question is asking for 3 different answers so let’s 

break it down into 3 parts. The acceleration between 

the change in velocity from 5 m/s to 3 m/s is calculated 

by plugging the values into the equation                                     

𝑎 =
(3 𝑚/𝑠−5 𝑚/𝑠)

2 𝑠
, to get a value of -1 m/s2 which is a 

negative acceleration (also known as a deceleration). 

During the 2-minute interval, we first convert the 

minutes into seconds. 2 minutes x 60 seconds = 120 

seconds. The final velocity and initial velocity are the 

same so the change in velocity is 0! The time interval 

doesn’t matter as 0 divided by anything is just 0 so the 

acceleration during that period is 0 m/s2. To calculate 

the acceleration between 3 m/s to 15 m/s we will just 

plug the values into our equation to get                                        

𝑎 =
(15 𝑚/𝑠−3 𝑚/𝑠)

4 𝑠
. The acceleration during that period is 

3 m/ s2. 
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2.3 

Kinematics 

 

Kinematic Equations 

When we talk about kinematics, we talk about 

representing an object’s motion using math and 

geometry. We have already discussed various ways to 

represent the motion of an object but how exactly can 

we solve for some specific things that our other 

equations can’t provide us? Here’s where the kinematic 

equations come in. There are three main equations that 

we can manipulate to find just about everything we 

need to depict an object’s motion; this includes its 

change in position (displacement), initial velocity, final 

velocity, time, and acceleration. The three main 

equations are below and solve for three different 

components: 

1. 𝛥𝑥 = 𝑣𝑖𝑡 + (
1

2
) 𝑎𝑡2 

2. 𝑉𝑓
2 = 𝑣𝑖

2 + 2𝑎𝛥𝑥 

3. 𝑉𝑓 = 𝑣𝑗 + 𝑎𝑡 

 

There are many ways to write these various equations, 
but we will be using this format throughout this book. 
The first equation solves for the change in position of 
an object also known as displacement. The second 
equation solves for the final velocity of an object when 
time is unknown, and the third equation solves for the 
final velocity of an object when time is known. These 
equations can be manipulated to solve for other parts 
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of the equation such as finding time when final 
velocity, initial velocity, and acceleration are known 
when using equation three. Let’s see how to use these 
equations! 

Steps for solving questions about kinematics: 

1. List out the knowns and the unknowns 
2. Select which equation(s) to use 
3. Plug in values to solve for unknown values 
4. Let’s put these steps into use. 

Let’s put these steps into use.  

Henry begins his daily run jogging at a speed of 1 m/s 
but then suddenly starts to accelerate at 3 m/s2 for 3 
seconds. How far did Henry travel during his run? 

To solve this let's follow our steps, what are the knowns 
and the unknowns? We know that he initially started 
his run at 1 m/s which is 𝑣𝑖, and we also know that he 
accelerated at 3 m/s2 which means a = 3 m/s2, and 
finally, the time for his acceleration was 3 seconds so     
t = 3 s. We are looking for 𝛥𝑥 which is what the equation 
is asking for. The equation which has all these parts is 
equation number one! Let’s plug in our values and 
solve:  

𝛥𝑥 = 𝑣𝑖𝑡 + (
1

2
) 𝑎𝑡2 

𝛥𝑥 = (1 𝑚/𝑠)(3 𝑠) + (
1

2
) (3 𝑚/𝑠2)(3 𝑠2) and we get     

Δx = 7.5 meters as Henry’s displacement. 
 

Let’s try a harder problem that requires the usage of 
more than one of these equations: 
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Bob likes to ride on roller coasters. Today he rode a 
roller coaster that was initially at rest but began to 
accelerate very fast at 10 m/s2 and was displaced 200 
meters during this time. How long did Bob ride the 
rollercoaster? 
 
Let’s use our steps and list out the knowns and the 
unknowns: Initial velocity is equal to 0 m/s as it begins 
at rest, acceleration is 10 m/s2, and displacement is 
200 meters. The unknown we are looking for is time, 
none of the equations we have can solve for time from 
just these three knowns so we must do something else 
first. If we use the equation, 𝑉𝑓

2 = 𝑣𝑖
2 + 2𝑎𝛥𝑥 we can 

solve for final velocity and then plug in that value into 
either equation one or equation three to find time! Let’s 
try it out, first plug in the values into equation two.  
𝑉𝑓

2 = ( 0 𝑚/𝑠) + 2(10 𝑚/𝑠2)(200 𝑚) if we solve for 𝑉𝑓 we 

get 200 m/s. Now let’s plug in this value along with our 
other knowns into the equation 𝑉𝑓 = 𝑣𝑗 + 𝑎𝑡  

(200 𝑚/𝑠) = ( 0 𝑚/𝑠) + (10 𝑚/𝑠2)𝑡. Once we isolate t and 
solve for the time, we get t = 2 seconds! 
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Try it on your own: 

1. A football player throws a ball with an initial 
velocity of 15 m/s to a friend. The friend catches the 
ball in 3 seconds. How far away was the friend? 

 

 

Distance: _______________ meters 

2. Sarah runs a race in just 8 seconds. She began her 
run initially starting at rest but accelerated rapidly at 
3 m/s2. How fast does she run after 20 seconds? 

 

 

Final Speed: _______________ m/s 

3. Marco is in space riding his spaceship traveling at a 
speed of 1,000 m/s initially, he decelerates before he 
hits an asteroid that is 35 meters away from him. 
What must be Marco’s acceleration so that he does 
not hit the asteroid?  

 

 

 

Acceleration: _______________ m/s2 
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Answer Key: 

1. Let’s list out our knowns, initial velocity is 15 m/s, 
and the time is 3 seconds. The unknown is distance or 
change in position so we will use equation one,          

𝛥𝑥 = 𝑣𝑖𝑡 + (
1

2
) 𝑎𝑡2. Since there is no acceleration on the 

ball, we will assume it is 0. When we plug in the values, 

we get 𝛥𝑥 = (15 𝑚/𝑠)(3 𝑠) + (
1

2
) (0 )(3𝑠)2 where the 

change in position or distance is equal to 45 meters.  
 
2. To start let’s list out our known values, the time is 8 
seconds, the initial velocity is 0 m/s as she starts at 
rest, and finally, her acceleration is 3 m/s2. We are 
solving for final velocity so we will use equation three, 
𝑉𝑓 = 𝑣𝑗 + 𝑎𝑡. Let’s plug in the known values to solve for 

the final velocity. 𝑉𝑓 = (0 𝑚/𝑠) + (3 𝑚/𝑠2)(8 𝑠) and we 

get a final velocity of 24 m/s. 
 
3. To answer this question let’s look at the knowns, 
initial velocity is 1,000 m/s, distance is 35 meters, 
final velocity is unknown and so is acceleration which 
is what we are solving for. But wait! Final velocity is 
actually known, the spaceship must stop completely to 
not hit the asteroid which means that final velocity 
must be equal to 0 m/s! Since we have all this 
information, we can find acceleration using equation 
two, 𝑉𝑓

2 = 𝑣𝑖
2 + 2𝑎𝛥𝑥. Plugging in the known values we 

get (0 𝑚/𝑠)2 = (1000 𝑚/𝑠)2 + 2𝑎(35 𝑚) if we solve for 
acceleration, we get an acceleration of -14,285.71 
m/s2! 
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2.4 

Kinematics 

 

Freefall & Gravity 

Ouch! An apple just fell on my head. Hmmm… If an 
apple falls, then why doesn’t the moon fall? This is 
probably the most famous story regarding the concept 
of gravity and I'm sure we have all heard it before. 
Gravity was first discovered by Isaac Newton, and it is 
a force (we will talk more about forces in the next 
chapter) that makes bodies attract and move towards 
each other. Well, when we talk about gravity in 
kinematics, we talk about the acceleration due to 
gravity which we write as “g” (also known as ‘little g’). 
The acceleration due to gravity has a value that equals 
about 9.81 m/s2 but we will just be using -10 m/s2 to 
make calculations easier. When an object is in freefall 
it means that the only acceleration on the object is from 
gravity. 

Let’s look at an example: 

Jack throws a ball into the air with an initial velocity of 
12 m/s. The ball reaches its max height and comes back 
down, the ball experiences freefall throughout the fall. 
How high did it reach?  

 

 
Height: _______________ meters 
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To solve this question, we must keep one thing in mind. 
At the top (max height) of an object being thrown into 
the air, the velocity of the object is equal to 0 m/s. 
 

 
Here the graph just depicts what the trajectory of an object thrown 

into the air would look like, what the axis represents does not matter. 

 
This is very useful for us as we can split up the motion 
of the object into two parts, one where it is reaching its 
max height and the other part where it is falling back 
down. Now we can list our knowns and unknowns, we 
know that the initial velocity is 12 m/s, and we also 
know that the velocity at the max height is equal to 0 
m/s so the final velocity at the top is equal to 0 m/s, 
and the acceleration is equal to g which is  -10 m/s2 and 
we are solving for max height which is the change in 
position in the y-axis. We can use equation two 𝑉𝑓

2 =

𝑣𝑖
2 + 2𝑎𝛥𝑦 to solve our question, here Δx is represented 

as Δy as the motion is in the y-direction (we can’t use 
equation one as we don’t have time). Let’s plug in our 
knowns to solve for max height: (0 𝑚/𝑠)2 = (12 𝑚/𝑠)2 +
2(−10 𝑚/𝑠2)𝛥𝑦, if we isolate for Δy we get 7.2 meters. 
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2.5 

Kinematics 

 

2D Motion 

What do a waterfall, kicked soccer ball, and 
rollercoaster all have in common? Their motion needs 
to be described in two dimensions. While we can 
describe a car driving or a ball falling in a straight-line 
one-dimensional motion, all the previously mentioned 
examples move in two different directions that require 
two dimensions to describe. A waterfall goes outward 
and downward; a soccer ball that's kicked goes upward 
and outward. Let’s consider the following: 

A person wants to go from point A to point B, but they 
can't move through the city blocks as there are 
buildings. Seeing how the city blocks are arranged, let’s 
set our axis and our origin in a point most convenient 
to us. 
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We can see that point A is 3 blocks away from point B 
horizontally and 4 blocks away vertically. This means 
that the person needs to travel 3 blocks on the x-axis 
and 4 blocks on the y-axis. But what if we want to find 
the displacement between point A and point B?  Using 
the tip-to-tail method, we can place the tail of the 
vertical vector on the tip of the horizontal vector. 
Because our axes are perpendicular, then so are the 
vectors. What this means is that the angle is 90 
degrees, and we can use the Pythagorean theorem to 
find the hypotenuse, or the total displacement of the 
person. Let's test it out: 

𝑥2 + 𝑦2 = 𝑑2 

√𝑥2 + 𝑦2 = 𝑑 

√(3 𝑏𝑙𝑜𝑐𝑘𝑠)2 + (4 𝑏𝑙𝑜𝑐𝑘𝑠)2 = 𝑑 

d= 5 blocks, the person is displaced 5 blocks. 

An important property of 2D motion is that each 
dimension is independent of one another. This means 
that anything that happens in one dimension does not 
affect the other dimension. This property is best seen 
when objects are in free fall. The object does not 
accelerate horizontally because gravity only affects the 
object in the vertical direction. If one object is launched 
horizontally and another is released from rest from the 
same height at the same time, then they will keep the 
same vertical position with each other throughout the 
entire motion despite differing horizontal position. 
Because of this principle, we can break apart 2D 
motion, allowing us to observe how the object moves in 
each dimension. 
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2.6 

Kinematics 

 

Projectile Motion 

A projectile is defined as an object that experiences an 

initial thrust and then moves in freefall. Kicking a ball, 

launching a cannon, or rocks erupting from a volcano 

all are examples of projectiles. However, projectiles are 

rarely thrown just in the vertical direction, meaning we 

need to analyze the motion of the projectile in two 

dimensions. 

Let’s take the example of kicking a soccer ball at 6 m/s 

30 degrees above our horizontal line, or the ground. 

Since the ball is moving both vertically and 

horizontally, we can split the motion into each part. 
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The vertical and horizontal vectors are perpendicular, 

meaning that we can take the initial velocity v and 

multiply it by the sine and cosine of the angle 30 

degrees to find the velocity in each direction, which we 

will name 𝑣𝑥 and 𝑣𝑦 respectively. 

𝑣𝑥 = 𝑣 cos(𝜃) 

𝑣𝑦 = 𝑣 sin(𝜃) 

In this scenario, 𝑣𝑥 = 3√3 m/s and 𝑣𝑦 = 3 m/s initially. 

However, as the motion of the ball continues, the 
velocity in the y-direction will decrease due to gravity, 
while the velocity in the x-direction remains constant. 
This will result in one exact point where the ball is at 
the highest vertical position, which we can find with the 
kinematic equations.  

𝑣𝑓
2 = 𝑣𝑖

2 + 2𝑎𝛥𝑦 

0 = 𝑣𝑦
2 − 2𝑔𝛥𝑦 

2𝑔𝛥𝑦 = 𝑣𝑦
2 

𝛥𝑦 =
𝑣𝑦2

2𝑔
 

𝛥𝑦 =
(3𝑚|𝑠)

2(10 𝑚/𝑠2)
 

𝛥𝑦 = 0.45 𝑚 The reason we substitute 0 for the final 
velocity is that at the maximum height, gravitational 
acceleration has decreased the velocity where it is no 
longer moving in the positive y-direction. 
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2.6 

Kinematics 

 

Reference Frames 

If you were in a train… then to an outside observer, you 

would be moving as fast as the train was. However, 

from your perspective, you aren’t moving at all. This is 

a principle known as reference frames in physics. But 

what exactly are they? And how can we use them in 

physics? 

We use reference frames in physics to describe the 

motion of objects and their relation to one another. A 

reference frame can be thought of as the perspective of 

the observer, which establishes a set of coordinates and 

reference points used to describe the motion outside of 

the frame. Using the previous example, the reference 

frame of an outside stationary observer to the train 

would see that the train and person are moving at a 

certain speed. However, the reference frame of the 

person inside the train will see that the train is moving 

at 0 m/s and the outside environment is moving in the 

opposite direction with the same speed.  

The most commonly used reference frame is the “lab 

frame” — a stationary frame outside of any system. 

Think of it as the “fourth wall” on a TV show or video 

game.  

Is it possible for a reference frame to be moving? Yes! 

For a moving reference frame, we need to consider its 
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motion in the lab frame and apply that to everything 

outside of the new frame. If Boat A is moving to the 

right at 3 m/s and Boat B is moving to the left at 5 m/s 

in the lab frame, then from the reference frame of Boat 

A, Boat A is stationery and Boat B is moving to the left 

at 8 m/s. This is how we translate reference frames: we 

need to first translate it to the lab frame, and from there 

we can translate the lab frame to the desired reference 

frame! 
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Chapter 3 

 

Dynamics 
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3.1 

Dynamics 

 

What is a Force? 

You open the door to enter the store, you push instead 

of pull. Hmm… Why do some doors need to be pulled 

and others need to be pushed? Well to answer this 

question, we must learn what a force is! A force is 

essentially just a push or pull which causes something 

to have a change in its velocity or in other words, causes 

an object to accelerate. Isaac Newton created various 

laws for forces in the 1600s and we can use all of them 

to describe the movement of objects when mass is a 

factor! There are three of Newton's Laws which we will 

be learning and using throughout this unit so get ready 

to learn! 

 

Question to Think About: What force causes the apple to fall?                                

Hint: We have already discussed it before!  
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3.2 

Dynamics 

 

Newton’s First Law 

Have you ever wondered why objects which stay still, 

stay still? Yeah, it’s a silly question, of course, if an 

object is staying still it will continue to stay still, but 

this is actually one of the most important questions 

when considering the concept of forces. This was first 

stated by Aristotle, an ancient Greek philosopher, but 

the concept was later refined by Newton. Newton 

completed the theory and created his first law: 

Newton’s First Law: “An object in rest will stay in 

rest and an object in motion will stay in motion 

unless acted upon by an unbalanced force…” 

Well, what is this unbalanced force he mentions here? 

Essentially it is any force that can cause a change in an 

object’s velocity, which is what we define as a force! 

However, a balanced force as we will learn later in the 

Equilibrium unit is a force that is balanced out by 

another force and thus doesn’t change the velocity of 

an object. Let’s understand Newton’s first law through 

some examples. 
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Example #1: When a soccer ball is resting on the 

ground will it move if there are no forces applied on it? 

No, this is because an object at rest will stay at rest! 

 

 

Example #2: A bird is gliding from 500 meters to 1 

meter to catch prey, if the bird starts gliding will it 

continue to glide, or will its motion be stopped? The 

bird will continue to glide because an object in motion 

will stay in motion.  
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Example #3: A car going at 5 miles per hour 

continues to drive until it reaches its destination when 

the driver suddenly breaks! Will the car continue to 

move? No, it will not but this is odd, this doesn’t follow 

Newton’s First Law because an object in motion will 

stay in motion, but this is where the “unbalanced force” 

comes into play since there is a force applied by the 

breaks that cause the car to slow down to a stop, there 

is an unbalanced force and this is where Newton’s 

Second Law can help to explain this situation! 
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3.3 

Dynamics 

 

Newton’s Second Law and Mass vs 

Weight 

Have you ever heard of the words “mass” and “weight” 

before and wondered if they were the same thing? Well, 

when we use these words in physics, they are not the 

same thing. When we use the word mass we are talking 

about the quantity or amount of matter an object has 

and we use kilograms (kg) to measure this value. So, for 

example, a typical car may be 2 tons which is 4,000 

pounds or about 1,800 kg. This is what we usually think 

of as mass but if we use the same definition to define 

weight, we will find a problem. In physics weight is the 

measure of a force acting on an object due to the force 

of gravity. Yeah, that's right, gravity exerts a force, and 

it is measurable! We use Newtons (N) to represent 

weight or the force of gravity. But what exactly is a 

Newton? This is where Newton’s Second Law comes in. 

Newton’s Second Law: 𝐹 = 𝑚 𝑥 𝑎 

What does this mean? Force is equivalent to mass 
times acceleration. We know that gravity has an 
acceleration known as “g” which is about 10 m/s2 and 
objects inherently have mass. Let’s say an apple is on 
Earth and weighs about 1 kg. What is its weight? It’s 
super simple, all we do is multiply the mass (1 kg) by 
the force of gravity (10 m/s2) which means the weight 
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of the apple is 10 N or 10 Newtons. There are many 
different forces and remember anything is a force if it 
is a push or pull force that changes the velocity of an 
object. Let’s use Newton’s Second Law to solve some 
problems.  

Example #1: A 5-kilogram bird is in free fall after 
jumping from a tree. The only force acting on it is the 
force of gravity, and it is currently on Earth. What is the 
bird’s weight? 

 

Weight: _____________ Newtons 

Example #2: A balloon that weighs 2 Newtons on Earth 
is taken to Mars which has an acceleration due to 
gravity of about 3.72 m/s2. What is the balloon's mass 
and the balloon's weight on Mars? 

 

 

Mass: _____________ Kilograms 

Weight: _____________ Newtons on Mars 

Example #3: John pushes a 15 kg box across a smooth 
surface with no friction. The box starts at rest but 
speeds up to 5 m/s after a displacement of 15 meters. 
What is the force John exerts on the box?  

 

Force Exerted by John: _____________ Newtons 
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Answer Key: 

Question #1: To answer this question let’s consider the 
different parts of the question. We know the mass of 
the bird is just 5 kilograms and it is going through free 
fall, if we recall what free fall is, it is when the only force 
acting on a body is gravity so the acceleration of the 
bird will just be the acceleration due to gravity or “g” 
(10 m/s2). If we use Newton’s 2nd law 𝐹 = 𝑚 𝑥 𝑎, we 
can plug in the mass and acceleration to get                               
𝐹 = (5 𝑘𝑔) 𝑥 (10 𝑚/𝑠2) which is 50 Newtons. 

Question #2: When we solve this question we have to 
consider the difference between mass and weight, mass 
is something that is inherent in an object and doesn’t 
change, you can be on Mars, on Pluto, or Jupiter, and 
the mass of the object will stay the same no matter 
what, but the weight will change due to the force of 
gravity on an object. To find the mass of the balloon we 
first consider its weight on Earth which is 2 Newtons. 
Since weight is equal to 𝐹 = 𝑚 𝑥 𝑔 we can add the 
known values of F which is 2 N and g which is 10 m/s2 
on Earth.  2 𝑁 = (𝑚) 𝑥 (10 𝑚/𝑠2) which gives us a mass 
of 0.2 kg. To find the weight on Mars we use the 
formula again but instead of 10 m/s2, we will use               
3.72 m/s2 as that is the acceleration due to gravity on 
Mars. When we plug in the known values into the 

formula, we get 𝐹 = (0.2 𝑘𝑔) 𝑥 (3.72
𝑚

𝑠2) and find the 

weight of the balloon on Mars as 0.744 N which is 
much less than the weight on Earth! 
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Question #3: For this question, a diagram would be 
very nice to represent the situation. Here is one below: 

 

Here we will combine our kinematics knowledge and 
Newton’s laws to answer the question. Since the 
equation for force is 𝐹 = 𝑚 𝑥 𝑎 and we are missing the 
acceleration, we must use kinematics to help. Let’s 
consider the parts we have, we know that the initial 
velocity of the box is 0 m/s because it begins at rest, the 
final velocity is 5 m/s, and the displacement is 15 
meters. We can use the equation, 𝑉𝑓

2 = 𝑣𝑖
2 + 2𝑎𝛥𝑥. Let’s 

plug in what we have, (5 𝑚/𝑠)2 = (0 𝑚/𝑠)2 + 2𝑎(15 𝑚). If 
we isolate the equation to find acceleration, we get                      
a = 0.83 m/s2. Now that we have everything we need 
for the equation we can plug in the values to find the 
force exerted. 𝐹 = (15 𝑘𝑔) 𝑥 (0.83 𝑚/𝑠2) and the force 
is equal to about 12.5 N! 

  



A High Schooler’s Guide to Physics 

[75] 
 

3.4 

Dynamics 

 

Free Body Diagrams 

Before we talk about Newton’s Third Law, it is 
important to talk about Free Body Diagrams. In the 
third example for Newton’s second law, we drew a 
diagram to represent the problem, and this was useful 
when we had just one force acting on the object, but 
what happens if there are multiple forces? Here we 
need to consider a free-body diagram also known as a 
“F.B.D”. A FBD essentially shows all the forces acting 
on an object using arrows which are vectors of forces 
acting on a body. Making a FBD is simple and here are 
the steps. 

Steps to draw a free-body diagram: 

Step 1: Define the system and environment  

Step 2: Draw a dot to represent the system 

Step 3: When on Earth draw a pull from the Earth 

Step 4: Find where the environment makes contact 
with the system 

Step 5: Draw force vectors to scale on the systems dot 
for each point of contact 

**Each force on the diagram must come from the object in the 
picture  
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**The sum of the forces must equal to the mass times the 
acceleration 

The steps are simple but to understand them let’s look 
at some examples. First, let’s clear up a misconception. 
When we defined Newton’s Second Law, we defined it 
as the equation 𝐹 = 𝑚 𝑥 𝑎 which isn’t incorrect but 
there is more to the equation than just that. The true 
equation is ∑𝐹 = 𝑚 𝑥 𝑎 which can be defined as Net 
Force is equal to mass times acceleration. But what 
exactly is a net force? A net force is the sum of all the 
forces on an object. This means that if multiple forces 
are acting on an object, the net force would be the sum 
of all the forces. Let’s look at an example using FBDs to 
better understand this concept.  

Example… Rocky pushes a rock across a flat surface 
with no frictional forces with a force of 100 Newtons 
but Joe also pushes on the same rock in the opposite 
direction as Rocky with a force of 50 Newtons. If the 
rock weighs 5 kg, find the acceleration of the rock.  

Let’s use our steps for FBDs and our new equation 
∑𝐹 = 𝑚 𝑥 𝑎 to solve this problem. 

Step 1: Let’s draw what the system and environment 
are. 
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A system is the object/body which forces are acting 
upon, an environment is what causes the force. Here 
the system is the rock, and the environment is Rocky 
and Joe exerting forces on the Rock. 

Step 2: For our FBD we use a dot to represent our 
system. 

Step 3: Now we will add arrows to 
represent the pull from Earth which is 
better known as the Force of gravity. 
From now on we will be labeling our 
forces with subscripts (the small letter to 

the bottom right of the letter). The rule for labeling 

forces is F”system”,”environment”. This means we 

label a force by first writing the name of the system and 
then the environment which it comes from. So, for the 
force of gravity, we will label it as FRock, Earth. To find the 
magnitude of this force we simply use our equation  
𝐹 = 𝑚 𝑥 𝑔 and we get 𝐹 = (5 𝑘𝑔) 𝑥 (10 𝑚/𝑠2) and we 
get the value as 50 N. This force will almost always be 
drawn downwards towards the center of Earth. The 
force vector will be drawn to the center of the dot. 
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We aren’t done yet though for this force when there is 
a contact force between two objects, here the ground 
and the Rock, we have something known as a “normal 
Force” which is a force that prevents an object from 
falling through a surface. In this situation, it is 
equivalent to the force of gravity but points upwards. It 

will be the same magnitude as the 
force of gravity but the opposite in 
direction. We can label this force as 
FRock, Ground but we will just be 
writing FN to simplify it. 

Now we have all the forces in the y-
axis, we can move on to the other 
steps which represent the forces in 
the x-axis exerted by the two 
people.  

Step 4/5: Here we will add the 
forces from Rocky and Joe. Rocky 

exerts a force to the right of 100 N whereas Joe exerts 
a force of 75 N to the left. This means the force vector 
of Rocky should be slightly longer than Joe and both 
forces should be pointing in opposite directions. 
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Now that we have all the forces in the FBD we can move 
on to finding the net force exerted on the Rock and the 
acceleration of the rock. To add up all the forces we 
split up the forces based on the axis that they are 
exerted on similar to 2-D motion. We will have a   
 ∑𝐹𝑥 = 𝑚𝑎𝑥 and ∑𝐹𝑦 = 𝑚𝑎𝑦. 

This means we will add up all the forces in the x-axis 
and the y-axis separately. For the x-axis, we will add up 
the forces by the two people and we will also consider 
the direction they come from. Since the force from 
Rocky is in the positive x-axis it will be a positive force 
whereas the force from Joe since it is in the negative x-
axis will be negative. This means…  

100 𝑁 − 75 𝑁 = (5 𝑘𝑔) 𝑥 𝑎𝑥. If we solve the equation, 
we get 𝑎𝑥 = 5 m/s2 and the net force in the x-direction 
is equal to 25N.  

Now if we do the same thing for the y-axis, we can 
expect the acceleration to be 0 m/s2 since the rock is 
only moving horizontally and not vertically so let’s test 
this hypothesis.  

50𝑁 − 50 𝑁 = (5 𝑘𝑔) 𝑥 𝑎𝑦. if we solve for 𝑎𝑦 we see that 

it is equal to 0 m/s2 which is exactly what we expected. 
We can even test this further in our FBD as if we did 
vector addition with the normal force and the force of 
gravity, we would see that both vectors cancel out!  

FBDs may seem daunting and like a lot of work but 
with enough practice, they don’t take longer than 30 
seconds to set up. Let’s try some more examples in the 
next page:   
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Try it on Your Own: 

Example #1: A balloon that weighs 10 N on Earth is 
taken to Jupiter which has an acceleration due to the 
gravity of 23 m/s². It floats on this planet and has no 
other forces acting on it, draw its FBD and label all the 
forces acting on the balloon. 

 

 

Example #2: A boxer punches a 50kg punching bag 
with a force of 2000 N, the punching bag is attached to 
a rope that holds it up, draw the FBD of the punching 
bag and the acceleration caused by the boxer. 

 

 

Acceleration: ____________ m/s2 

Example #3: A 200 kg car moves at a constant speed of 
15 m/s on a frictionless horizontal surface when a truck 
suddenly attaches a rope behind the car and pulls with 
a constant force of 500 N from behind. Another rope is 
then attached to the front of the car which applies 
another force of 500 N to the car. What is the speed of 
the car while these forces are acting on the car? 

 

Speed: ____________ m/s 
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Answer Key: 

Question #1: Let’s draw a FBD for the Balloon when it 
is on Earth: 

 

Since the balloon is floating and there is no point of 
contact with the ground or any other surface, we will 
not include a normal force. We can determine the mass 
of the Balloon using Newton’s Second Law:                  
(10 𝑁) = 𝑚 𝑥 (10 𝑚/𝑠2) this gives us a mass of 1 kg.  

Now we can reuse Newton’s second law to find the 
Forge of gravity when the Balloon is on Jupiter.            
𝐹 = (1 𝑘𝑔) 𝑥 (23 𝑚/𝑠2), this gives us a force of gravity 
of 23 Newtons. The FBD is below: 

 



Uddin & Agolli 

 

[82] 
 

Question #2: Let’s begin solving this question by first 
drawing a free-body-diagram. We can determine the 
system to be the punching bag, and the environment to 
be the Earth, the punch from the boxer, and the rope 
holding it up. Let’s label the forces in an FBD: 

 

Now you may wonder why 
there is no force going 
leftwards if there is a contact 
force between the boxer’s 
punch and the bag, there 
actually is but it is not a part 
of this system, this is 
something we will talk about 
more with Newton’s Third 
Law but for now we will not 
include it into our system.  

You also might wonder why the vectors for the force of 
gravity and the force from the rope are equal, this is 
because they must be the same size or else the bag will 
accelerate up or down. Since the bag is not moving up 
or down, we draw the vectors with equal magnitude. To 
find the actual value of these two forces we just use 
Newton’s Second Law: 𝐹 = (50 𝑘𝑔) 𝑥 (10 𝑚/𝑠2) which 
gives us a force of 500 N for both vectors.  

Now to find the acceleration for the punching bag we 
must find the forces in the x-axis which means we have 
to use this equation: ∑𝐹 = 𝑚 𝑥 𝑎. Let’s include all the 
forces in the x-axis: 
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2000 𝑁 = (50 𝑘𝑔) 𝑥 𝑎𝑥  If we solve for 𝑎𝑥 we get a value 
of 40 m/s2 which is how fast the punching bag 
accelerates. 

Question #3: Let’s begin solving this problem by 
drawing a free-body-diagram. From now on, we will be 
labeling the force of gravity and normal force vectors as 
Fg and FN because it is much simpler to write, but the 
best way to write these vectors is with the rules we 
stated previously. 

 

We solved for the 
normal force and 
force of gravity by 
using Newton’s 
Second Law: 

 

𝐹 = (50 𝑘𝑔) 𝑥 (10 𝑚/𝑠2)   and got a value of 2000 N. 
Now to solve for the forces in the x-axis that cause the 
horizontal acceleration we must use our equation 
∑𝐹𝑥 = 𝑚𝑎𝑥. Let’s add up the forces and solve for the 
acceleration (500 𝑁) − (500 𝑁) = (200 𝑘𝑔) 𝑥 𝑎𝑥. If we 
solve for 𝑎𝑥 we get a value of 0 m/s2. But does this mean 
our car doesn’t move at all? No, the acceleration will 
only provide a change in motion but if there is no 
change in motion, the motion of the object will stay the 
same and not change. Since in the problem it states 
that the car moves at a constant speed of 15 m/s it will 
continue moving at 15 m/s with no change in its speed. 
This is something known as kinetic equilibrium which 
we will be talking about in the next chapter! 
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3.5 

Dynamics 

 

Equilibrium 

Have you ever been on a seesaw with a friend and you 
both equally balance each other out? Well, this is 
actually a form of equilibrium (we will talk more about 
the specific form in the torque unit). Equilibrium 
occurs when opposing forces balance each other out. 
We noticed this in example #3 in the Free Body 
Diagrams unit where the two forces pulling on the car 
balanced each other out. When we talk about 
equilibrium there are two forms, but one thing is held 
common between both: 

“In both kinetic and static equilibrium, the sum of the 
forces acting on the object is zero.” 

Static Equilibrium: An object is at rest and is not 
moving. 

Kinetic Equilibrium: An object is in constant 
motion where the velocity stays the same. 

Essentially what this means is that if the Net Force on 
an object is equal to 0 N, the acceleration of that object 
is 0 m/s2, thus it can either be moving at a constant 
velocity which is Kinetic equilibrium, or it can be at rest 
which is Static Equilibrium. When determining if 
something is in equilibrium make sure that ALL forces 
in both the x-axis and the y-axis are balanced (the 
forces add up to 0 N and cancel each other out). 
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3.6 

Dynamics 

 

Newton’s Third Law 

When you punch something, have you ever wondered 

why you feel such a powerful force back on your fists? 

You may think that it’s just how touching and punching 

objects works but have you ever thought that the wall 

punches you back? Would you be surprised if that is 

exactly how it works? Well, that is exactly how it works.  

Newton’s Third Law states that “for every action 

there is an equal and opposite reaction”. 

This basically means that if object A exerts a force on 

object B, then object B exerts a force of the same 

magnitude but opposite direction onto object A. These 

forces always come in pairs, here is a diagram to help 

show this. We usually use a FBD to represent these 

forces and it is super important to choose your object 

and system correctly to represent these forces. 
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As you can see the force applied to the block by the 
person is equal to the force of the block on the person. 
The direction of the force just changes based on what 
we chose at the system and environment. 

Another very important thing to consider when 
completing problems with Newton’s Third Law is that 
for a pair to be considered “third-law pairs”, they must 
be from two different systems. This rule basically 
proves why the normal force, and the force of gravity 
are NOT third law pairs. Third Law pairs are usually 
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marked with an “X” on the vectors to show that they are 
third law pairs.  

Try it on Your Own: 

Example #1: A person stands on a skateboard and 
pushes against a wall with a force of 50 N. 

What is the force exerted by the wall on the person? 

 

 

Force: __________ Newtons 

What happens to the skateboard because of the push? 
Explain using Newton’s Third Law. 

 

 

Example #2: Two people on ice skates face each other. 
Halim pushes Ahmed with a force of 30 N. Assume 
there is no friction between the skates and the ice. 

What force does Ahmed exert on Halim? 

 

 

Ahmed Exerts ______________ Newtons 



Uddin & Agolli 

 

[88] 
 

If Halim has a mass of 60 kg and Ahmed has a mass of 
75 kg, what are their respective accelerations? 

 

 

 

 

Halim Acceleration ________________ m/s2 

Ahmed Acceleration ________________ m/s2 

Example #3: When a carpenter hammers a nail into a 
piece of wood, the hammer exerts a force of 100 N on 
the nail. Draw the FBD of the forces acting on the nail 
and the FBD for the forces acting on the hammer. 
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Answer Key: 

Question #1:  

1. This question is a simple example of Newton’s 
Third Law, the answer is 50 N as we know that 
Newton’s Third Law states that if Object A 
exerts a force on Object B, then Object B exerts 
the same force on Object A but in the opposite 
direction, this means the 50 N exerted by the 
person is exerted on the person by the wall. 

 

2. As a result of the push, the skateboard will move 
backward. According to Newton’s Third Law, 
the wall exerts an equal and opposite force on 
the person, causing the person (and the 
skateboard they are standing on) to move in the 
opposite direction of the push. 

Question #2: 

1. This is again another simple Newton’s Third 
Law question, Ahmed would exert the same 
force as Halim but in an opposite direction, so 
he would exert 30 Newtons. 

 

2. For this question we must combine our 
knowledge from Newton’s Third Law and 
Second Law. Since we know they both exert 30 
Newtons of force, we can use Newton’s Second 
Law to find the acceleration of both people. Let’s 
recall what Newton’s Second Law is,  𝐹 = 𝑚 𝑥 𝑎. 
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To find the acceleration of Ahmed let’s plug in 
his mass 30 𝑁 = (75 𝑘𝑔) 𝑥 𝑎 If we solve for his 
acceleration, we get 0.4 m/s2. Make sure this is 
a positive acceleration as we can assume Halim 
pushes him to the right which is the positive x-
axis. To find Halim’s acceleration we will use a 
similar setup, but the force exerted by Ahmed 
would be negative since Newton’s Third Law 
states that the force would be in the opposite 
direction so in this case it would be negative. 
− 30 𝑁 = (60 𝑘𝑔) 𝑥 𝑎 If we solve for Halim’s 
accleretaion we get -0.5 m/s2! 

Question #3: First let’s draw the FBD for the nail: 

Here the force of gravity and the 
force on the nail by the hammer 
are in the same direction, we 
can add these vectors together 
and label them as one force, but 
we will keep it separate for now. 
The normal force increased due 
to the extra force from the 
hammer so we will draw it to 
match this. If the problem 
stated that the nail was 
accelerating downwards, we 
would make the normal force 
vector smaller. Now let’s draw 
the FBD for the Hammer:  
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Here the vector for the 
normal force and the 
force of the nail on the 
hammer are labeled and 
combined. The vector is 
drawn to scale to 
represent the additional 
force. These are 
Newton’s Third Law 
pairs so we can label 
them with an “x”, but we 
will leave them without 
the “x” for this solution.  
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3.7 

Dynamics 

 

Friction 

Have you ever rubbed your hands together on a cold 

winter day to warm up your hands? Have you ever 

pressed the brakes on your bike to slow down? Well, 

these are all examples of friction. Friction is considered 

a resistance that an object encounters when moving 

over a surface. There are two types of friction we will 

consider, and they are Static Friction and Kinetic 

Friction. Let’s begin with the equation for friction. The 

general formula for friction is as followed: 𝐹𝐹 = 𝜇𝐹𝑁 

The symbol “μ” is called “mu” and it is a coefficient 

which determines how much friction an object has. 

Normal force is also a part of this equation and 

multiplying both values gives us the value for the force 

of friction. Now let’s identify the two different types of 

friction. 

Static Friction: Is friction when an object is not 

moving, there is a different coefficient of friction for 

static friction than the other type of friction and the 

coefficient has a different subscript. For static friction 

the coefficient is “μs” which demonstrates that it is 

static. One thing to consider for the force of friction you 

get from this equation is that this value is the MAX 

force of friction an object can have before it turns 

into a different type of friction. Essentially, it’s harder 



A High Schooler’s Guide to Physics 

[93] 
 

to begin moving an object because the max force of 

static friction which resists movement is greater than 

kinetic friction. 

Kinetic Friction: This is the type of friction which 

occurs when an object is moving. Its value is less than 

static friction. Its coefficient is “μk” which 

demonstrates that it is kinetic. Let’s look at an example 

to understand what this means. 

Example: A 50kg rubber sled is sliding down a hill 
which is made of concrete. The static coefficient of 
friction for this sled and the surface is 0.9 while the 
kinetic coefficient is 0.68. Find the MAXIMUM force 
that can be applied to the sled so that it stays at rest.  

To answer this question, we will be using the equation 
𝐹𝐹 = 𝜇𝑠𝐹𝑁 since we know that this gives us the value of 
the MAXIMUM static friction before an object turns 
into kinetic friction. To find the max static friction let’s 
plug in the values. 𝐹𝐹 = (0.9)(50 𝑘𝑔)(10 𝑚/𝑠2), we find 
the value to be 450 N. If the value of the force applied 
to this sled were to be any value greater than 450 N, 
then the friction would turn into kinetic friction and we 
would use the equation 𝐹𝐹 = 𝜇𝑘𝐹𝑁 instead, if we were 
to use that equation the value for friction would be 
much less as the kinetic coefficient is much smaller 
than the static coefficient which makes sense as an 
object in rest is harder to move than an object already 
in motion. Another thing to consider is that if the value 
of the force applied is less than 450 N, the value of the 
force of friction will be equal to the force applied as the 
two force vectors would cancer each other out. Here’s a 
FBD to show these situations: 
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Force Applied < Max Static Friction: 

 

Here the force applied is less than the Max Static 
Friction which we determined is 450 N, the force of 
friction and the applied force are equal which means 
the object is in equilibrium, since the object initially 
was not moving, it will continue to stay at rest. 

Force Applied = Max Static Friction: 

 

Here the applied force is exactly equal to the Max Static 
Friction which means it will still be in equilibrium, if 
the value of the applied force were to be any value 
greater than 450 N (the Max Static Friction) then the 
force of friction would turn into kinetic friction and 
that value is equal to 𝐹𝐹 = 𝜇𝑘𝐹𝑁 which we can 
determine by plugging in the values from the given 
information which means the kinetic force of friction is 
equal to 𝐹𝐹  =  (0.68)(50 𝑘𝑔)(10 𝑚/𝑠2) which is 340 N 
and this value is the value of the kinetic frictional force 
no matter how much force applied as long as that force 
is greater than 450 N. 
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Force Applied > Max Static Friction: 

 

As you can see here the applied force is greater than the 
Max static friction and thus the force of friction is 
converted into kinetic friction which is less than the 
max static friction. The object would be moving as the 
applied force is greater than the force of friction, but 
the frictional force does slow it down as it is resisting 
the acceleration caused by the applied force. 

Usually, we show this concept of static and kinetic 
friction through this graph:  

 

Credit Research Gate 

It clearly shows how the force of friction initially 
increases as the applied force increases, then after it 
reaches the max static friction value, as applied force is 
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increased, the frictional force stays a constant value 
and is much less than the max static friction! Friction 
is a difficult concept to understand but it is definitely 
an amazing phenomenon. Let’s take a look at some 
practice problems to refine our understanding of this 
concept! 

Example #1: A wooden box weighing 30 kg is placed on 
a wooden floor. The coefficient of static friction 
between the box and the floor is 0.5. What is the 
maximum force that can be applied to the box without 
moving it? 

 

 

 

Maximum Force: _______________ N 

Example #2: A 20 kg metal block is sliding on an icy 
surface. The coefficient of kinetic friction between the 
block and the ice is 0.1. What is the frictional force 
acting on the block while it is moving? 

 

 

 

 

Frictional Force: _______________ N 
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Examples #3: A 40 kg crate is at rest on a rough 
surface. The coefficient of static friction between the 
crate and the surface is 0.6, and the coefficient of 
kinetic friction is 0.4. If a horizontal force of 250 N is 
applied to the crate, will the crate move? If so, what will 
be the frictional force acting on it once it starts moving? 

 

 

 

Will it Move:  

☐ Yes: Frictional Force: _______________ N 

☐ No 
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Answer Key: 

Question #1: For this question we must find the Force 
of Max Static Friction, to do this we can simply just use 
our equation 𝐹𝐹 = 𝜇𝑠𝐹𝑁, let’s plug in the known values 
𝐹𝐹 = (0.5)(30 𝑘𝑔)(10 𝑚/𝑠2), and we get a max force of 
static friction as 150 Newtons. 

 

Question #2: In this question since we know that the 
metal block is already sliding on the ice, we can assume 
that the friction is kinetic. We can just simply plug in 
the known values into our equation 𝐹𝐹 = 𝜇𝑠𝐹𝑁,  and we 
get 𝐹𝐹 = (0.1)(20 𝑘𝑔)(10 𝑚/𝑠2), which is 20 Newtons. 

 

Question #3: This question is a mix of everything we 
have learned about friction, first we must determine if 
the object is moving so we must find the max static 
friction. If we plug in the values to our equation, we get 
𝐹𝐹𝑀𝑎𝑥 = (0.6)(40 𝑘𝑔)(10 𝑚/𝑠2), and we get a 
maximum static friction force of 240 Newtons. Since 
our applied force is greater than that force                     
(250 N > 240 N), the friction is actually kinetic so we 
must use the other equation to get our frictional force. 
𝐹𝐹 = (0.4)(40 𝑘𝑔)(10 𝑚/𝑠2), and the value of the force 
of friction is 160 Newtons. So yes, there is a frictional 
force, and its value is 160 Newtons. Fg 
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3.8 

Dynamics 

 

Inclined Planes 

Have you ever gone down a steep hill on your bike, 

speeding up as go farther and farther down the hill? 

You may wonder if the laws of physics still abide in 

such a situation, well I’m here to tell you they do (albeit 

a little differently)! For us to understand inclined 

planes, ramps, hills, and anything where an object is at 

an angle, we must tilt our heads a little and see the 

world a little sideways.  

Let’s draw a diagram of what such a situation may look 

like below: 

 

Here we have a 5 kg box on an inclined plane of 30°, if 

we were to find all the forces acting on the box, we 

would have to label two new axis which we will call the 

parallel axis and the perpendicular axis. We will use 

these two axes to show the components of the force of 
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gravity and other forces acting on the box. Let’s look at 

what this may look like: 

 

As you can see, the force of gravity still points 

downwards towards the center of the Earth but now 

there are two other forces we have never seen. There is 

Fg|| better known as the force of gravity parallel to the 

surface which we talked about as the parallel axis. 

There is also Fg⊥ which is known as the force of gravity 

perpendicular because it is perpendicular to the 

surface. The normal force is pointing in the opposite 

direction of this force, and it is equal in magnitude. 

Now you may wonder what these two new forces are 

equal to and how they relate to gravity. Essentially, 

they are the two components of gravity and if we were 

to use the Pythagorean theorem to find their resultant, 
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the magnitude would be exactly equal to the force of 

gravity. To find the values of these forces we use a 

simple formula to find their values. 𝐹𝑔|| =  𝑚𝑔𝑠𝑖𝑛Ө 

where Ө is the angle between the surface and the 

ground. And 𝐹𝑔⊥ =  𝑚𝑔𝑐𝑜𝑠Ө. If these equations are 

hard to remember just remember this, “sine makes it 

slide” and we will see why in just a moment.  

Since we know that the value of Fg⊥ is equal to FN the 

equation for the normal force is equal to                                 

𝐹𝑁 = 𝑚𝑔𝑐𝑜𝑠Ө. Another thing to consider is that since 

the equation for friction also includes normal force it 

will also be changing because of an object being at an 

incline. The general equation for the force of friction 

(without upholding if it is static or kinetic) is equal to 

𝐹𝐹 = 𝜇𝑚𝑔𝑐𝑜𝑠Ө. The force of friction’s direction is 

dependent on whether the object is moving up or 

down, if the object is moving down the slope, then the 

friction will be upwards, but if the object is moving 

upwards, the force of friction will be downwards and 

acting with the Parallel force of gravity.  

The acceleration of the object on the inclined plane will 

be in the parallel axis, this means that the force of the 

object which causes a change in its motion will be in 

that axis, when we consider other forces acting on the 

object we should always keep in mind that the forces 

should be added in this new axis rather the x-axis or y-

axis as we usually would to solve for the acceleration of 

an object when multiple forces are acting on it. 
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Phew, that’s a lot of new information, let’s do some 

practice problems to understand inclined planes a little 

better. 

Example #1: Let’s say you have a 10 kg block moving 

downwards on an incline of 45°, if there are no external 

forces on the block and the coefficient of kinetic friction 

is 0.4, what is the acceleration of the block as it moves 

down the incline? 

Draw a diagram to represent the situation and draw the 

forces acting on the block: 

 

 

 

 

 

Acceleration of the block: ________________ m/s2 
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Example #2: Alfred pushes a 12 kg block down an 

incline of 30° with a force of 10 Newtons. The 

coefficient of kinetic friction is 0.43, determining the 

acceleration of the block as it moves down the incline.  

Draw a diagram to represent the situation and draw the 

forces acting on the block (remember that there is an 

additional force from Alfred!): 

 

 

 

 

 

 

Acceleration of the block: _______________ m/s2 
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Example #3: Dorian pushes a 1,000 kg car up an 
incline of 60° with a force of 5,500 Newtons, there is a 
force of friction in which the coefficient of kinetic 
friction is 0.2. Will Dorian successfully be able to push 
the car up the incline, if so, what is the acceleration of 
the car as it moves up the incline?  

Draw a diagram to represent the situation and draw 
the forces acting on the block: 

 

 

 

 

☐ No, he will not be able to move the car up the incline 
and its acceleration is _________________ m/s2 

☐ Yes, he will be able to move the car and its 
acceleration is _________________ m/s2 
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Answer Key: 

Question #1: To start answering this question let's fill 
in the forces acting on the system: 

 

To solve for the values of these forces let’s use our 
different equations, for the force of gravity we simply 
multiply 10 kg by 10 m/s2 to get 100 N, for the parallel 
force of gravity let’s use our equation 𝐹𝑔|| =  𝑚𝑔𝑠𝑖𝑛Ө if 

we plug in the known values we get                                           
𝐹𝑔|| = (10 𝑘𝑔)(10 𝑚/𝑠2)sin (45°) the value is 70.71 N. 

To find the perpendicular force of gravity we use our 
equation 𝐹𝑔⊥ =  𝑚𝑔𝑐𝑜𝑠Ө, if we plug in our known 

values, we get 𝐹𝑔⊥ = (10 𝑘𝑔)(10 𝑚/𝑠2)𝑐𝑜𝑠(45°) which 

is equal to 70.71 N. Since this value is also equal to our 
normal force, we can also add that to our diagram. Now 
for friction since we already have the normal force, we 
must multiply it by the coefficient of kinetic friction 
which gives us the equation 𝐹𝐹 = (0.4)(70.71 𝑁),  
which gives us a value of 28.28 N. Now we have to use 
Newton’s Second Law to solve for the acceleration. 
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Let’s add up all the forces in which the acceleration 
occurs (the parallel-axis), remember that a positive 
acceleration is going down the parallel-axis. 
(70.71 𝑁) −  (28.28 𝑁) =  (10𝑘𝑔) 𝑥 (𝑎). If we solve for 
the acceleration in the equation, we get a value of               
4.24 m/s2.  

Question #2: To solve this question, we will be using a 
similar setup as the last question, let’s first draw the 
FBD with all forces labeled:  

 

The forces in this situation are similar to the previous 
problem but the parallel force of gravity is added to the 
force applied by Alfred on the block which makes it 
larger. I won’t explain how to find each value because 
we explained how to do that in the previous question 
so take a look at that if you forgot! I’ll list the values 
after we make our calculations. The force of gravity is 
120N, the parallel force of gravity is 60N, the 



A High Schooler’s Guide to Physics 

[107] 
 

perpendicular force of gravity is 103.92 N, the normal 
force is also 103.92 N, the force of friction is 44.69 N 
and the force from Alfred is 10 N. Now again we will 
add all our forces using Newton’s Second Law to find 
the acceleration.  

(103.92 𝑁) +  (10 𝑁) −  (44.69 𝑁) =  (12 𝑘𝑔)𝑥(𝑎). If 
we solve for acceleration, we get 5.77 m/s2! 

Question #3: Let’s begin this question understanding 
the situation, the car will be moving upwards which 
means that the applied force will be upwards but the 
parallel force of gravity will be downwards meaning 
gravity actually slows down the car from moving but 
another thing to consider, since the applied force is 
upwards, the force of friction will actually be pointing 
in the same direction as the parallel force of gravity 
which is something that is really strange as it means the 
force of friction is actually positive! Let’s draw the FBD 
to understand this better: 
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Let’s figure out the values of all these forces, the force 
of gravity is 10,000N, the parallel force of gravity is 
8,660.25N the perpendicular force of gravity is 5,000N 
which means the normal force is also 5,000N. The 
force applied by Dorian on the block is 5,500N and 
finally the force of friction is 1,000N. Let’s use 
Newton’s Second Law to figure out the acceleration of 
the car, (remember friction is positive in this example) 

(8,660.25 𝑁) + (1,000 𝑁) − (5,500 𝑁) = (1,000 𝑘𝑔) 𝑥 (𝑎). 
When we solve for acceleration, we get 4.16 m/s2 which 
means that while yes, the car does move, it moves in 
the opposite way that Dorian pushes it which means it 
moves backwards. Physics really is cool, friction can 
help an object speed up, how interesting! 
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3.9 

Dynamics 

 

Tension and Hanging Systems 

When we talk about tension in physics we usually think 

about strings and rope systems. Tension is a force that 

we call the force of tension but something very strange 

about this force is that there isn’t one equation to 

represent it. Usually, the force of tension is a contact 

force similar to the normal force and thus just like 

normal force there is no specific equation for it and 

thus we must use Newton’s Second Law to solve for it. 

Let’s look at what tension may look like: 

 

Let’s assume the box is accelerating right at a speed of 

2 m/s2, there are no frictional forces, and the angle of 

the rope pulling on the box is 30°. Let’s find the normal 

force of the object and the value of the force of tension.  
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First let's find the force of gravity which is simply just 

100 Newtons. Now for the force of tension, we must 

break up the tension force into components similar to 

how we did with projectile motion. Let’s find the force 

of tension in both the x-axis and y-axis. 

In the x-axis the force is equal to: 𝐹𝑇𝑥 = 𝐹𝑇 cos 𝜃  

In the y-axis the force is equal to: 𝐹𝑇𝑦 = 𝐹𝑇 sin 𝜃. 

Since the only forces in the x-axis in this question is 𝐹𝑇𝑥 

as there is no friction, we can say that  𝐹𝑇𝑥 = 𝑚 𝑥 𝑎. 

Knowing this information, we can plug in some values 

to solve for the force of tension, not just in the y-axis 

but the entire force (𝐹𝑇)(𝑐𝑜𝑠 30°) = (10 𝑘𝑔)(2 𝑚/𝑠2), if 

we solve for 𝐹𝑇 we get 23.09 N. Now that we have that 

value we can solve for the normal force. Since the rope 

is in the direction of north-east, it not only moves the 

box rightwards, but it also moves it up a little. To solve 

for the normal force, we must find all the forces acting 

in the y-axis. We know that there are three forces, the 

normal force, the force of gravity, and the force of 

tension in the y-axis. The force of tension will act 

upwards and so will the normal force which means they 

will be positive, and the direction of gravity is negative. 

Let’s add these forces up and use Newton’s Second Law 

to get our normal force.   

(𝐹𝑇)(𝑠𝑖𝑛 30°) + (𝐹𝑁) − (10 𝑘𝑔) (10
𝑚

𝑠2) = (10 𝑘𝑔)(0 ) 

we know that 𝐹𝑇 is equal to 23.09 N so we can add that 

to the equation and solve for 𝐹𝑁 which is 88.45 N. We 
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used 0 m/s2 as the acceleration as the box doesn’t 

accelerate in the y-axis.  

Force of tension questions can get crazy but with 

enough practice we can easily tackle these complicated 

questions! 

Let’s try another example of what a tension problem 

may look like, this one is a lot more complicated but 

uses the same principles as what we have already 

learned. 

 

Find the values of T1 and T2. 

This question might look very complicated but let’s 

take it piece by piece: we know that all the forces in 

both the x-axis and y-axis will have an acceleration of 

0 m/s2 as the system is not moving. Another thing we 

know is that the forces in the y-axis are equal to 100 N 

which is the weight of the block. Let’s split up the forces 

into their components: 

 



Uddin & Agolli 

 

[112] 
 

 

Now that we have all the components labeled, we can 

create an equation that represents the different 

components. We will call the force of tension “T” in this 

situation just for simplicity. 

For the forces in the y-axis, the equation would look 

like this: 

(𝐹𝑦)  =  𝑇1(𝑠𝑖𝑛Ө2)  +  𝑇2(𝑠𝑖𝑛Ө2)  =  100 𝑁 

For the forces in the x-axis, the equation would look 

like this: 

(𝐹𝑥) =  −𝑇1(𝑐𝑜𝑠Ө2)  + 𝑇2(𝑐𝑜𝑠Ө2)  =  0 𝑁 

Let’s find the 𝑠𝑖𝑛Ө values and the 𝑐𝑜𝑠Ө values: 

𝑇1𝑠𝑖𝑛(35°)  =  𝑇1(0.57) 

−𝑇1𝑐𝑜𝑠(35°)  =  −𝑇1(0.819) 

𝑇2𝑠𝑖𝑛(45°)  = 𝑇2(0.707) 

𝑇2𝑐𝑜𝑠(45°)  = 𝑇2(0.707) 
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If we add these values back to our two equations, we 

can see something very interesting: 

(𝐹𝑦)  =  𝑇1(0.57)  + 𝑇2(0.707)  =  100 𝑁 

(𝐹𝑥)  =  −𝑇1(0.819)  + 𝑇2(0.707)  =  0 𝑁 

If this reminds you of a system of equations, that’s 

exactly what it is! We can subtract both equations to 

remove the 𝑇2(0.707) so it makes finding the tension 

value much simpler. 

    𝑇1(0.57)     +   𝑇2(0.707)  =  100 𝑁 

− 𝑇1(0.819)  + 𝑇2(0.707)   =   0 𝑁 

___________________________________________ 

=                           𝑇1(1.389)   =  100 𝑁 

If we solve for 𝑇1 we get 72 N 

Now if we plug in this value back into either equation 

and solve for 𝑇2 we get a value of 83.4 N. 

These tension problems require a lot of thinking, you 

won’t always use a system of equations and may need 

to identify what exactly you might have to do to 

manipulate the equation to find the value you are 

looking for. Let’s do some more practice problems to 

get better at this skill: 
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Example #1: A 30 kg bookbag sits on a table which is 

frictionless. If there is a rope attached to the bookbag 

which moves it leftwards at an angle of 60° and with an 

acceleration of 3 m/s2, what is the force of tension of 

the rope and the normal force acting on the bookbag? 

 

 

 

 

 

 

Force of Tension on the Rope: ______________ N 

Normal Force: ______________ N 
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Example #2: Find the force of tension on string 1 and 
string 2 which holds up a weight of 50 N and is attached 
by string 1 at a 25° angle and is attached horizontally 
with string 2. A diagram is below: 

 

 

 

 

 

 

 

 

 

 

Tension One: _____________ N 

Tension Two: _____________ N 
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Answer Key: 

Question #1: To solve this question, we must consider 
the two components of the string that provides the 
force of tension. We know that the bookbag moves at    
3 m/s2 towards the left, weighs 300 Newtons, and the 
string is at a 60° angle from the horizontal so we can 
use that information to find the force of tension. Let’s 
use Newton’s Second Law to solve this: 

𝛴𝐹𝑥  =  𝑚 𝑥 𝑎𝑥 , if we add up the forces in the x-axis we 
get: 𝐹𝑇  𝑐𝑜𝑠(60°) =  (30 𝑘𝑔)𝑥(3 𝑚/𝑠2) and if we solve 
for the force of tension, we get 180 N. Now if we want 
to find the normal force on the box, we have to find the 
difference between the force of gravity from the force 
of tension in the y-axis. We will simply use Newton’s 
Second Law again to solve this:  𝛴𝐹𝑦  =  𝑚 𝑥 𝑎𝑦, since 

there is no acceleration in the y-axis the right side of 
the equation is just equal to 0. The only forces in the y-
axis are the force of tension in the y-axis, the force of 
gravity, and the normal force so let’s use information 
from the previous question to answer this question: 

𝐹𝑁 + 𝐹𝑇𝑠𝑖𝑛(60°) − (300 𝑁) =  0. Since 𝐹𝑇  is equal to 
180 N we add that back into the equation:                               
𝐹𝑁 + (180 𝑁)𝑠𝑖𝑛(60°) − (300 𝑁) =  0, when we solve 
for the normal force, we get about 144.12 Newtons 
which is what we could expect! 
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Question #2: Let’s answer this question step by step, 
we know that to answer these types of question we have 
to break up the forces into their components so let’s 
begin by doing that: 

 

Let’s create two equations, one for the forces in the x-
axis and one for the forces in the y-axis, let’s begin with 
the x-axis: 𝐹𝑥 = 𝑇2 − 𝑇1𝑐𝑜𝑠ፀ = 0 the right side would be 
equal to 0 because the system is in equilibrium. For the 

forces in the y-axis, we get: 𝐹𝑦 = 𝑇1sinፀ - 50 N = 0 the 

right side is similarly equal to 0 because the system is 
in equilibrium 

From the first equation if we were to manipulate the 
problem, we can see that 𝑇2 = 𝑇1𝑐𝑜𝑠ፀ so that means if 
we get the value of either 𝑇2 or 𝑇1 we can solve for the 
other tension. If we look at the second equation, we can 
see that 𝑇1𝑠𝑖𝑛ፀ = 50 𝑁, if we plug in 25° for the angle, 
we can solve for 𝑇1 which equals 118.31 N. If we plug 
that into the equation, 𝑇2 = 𝑇1𝑐𝑜𝑠ፀ we see that                           
𝑇2 = (118.31 𝑁) 𝑐𝑜𝑠(25°) and when we solve for 𝑇2 we 
get 107.23 N! These problems look much harder than 
they actually are. Take time to analyze the problem and 
find the solution using the knowledge you have 
learned; you already know how to solve these problems 
so don’t be scared to try and solve them! 
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3.10 

Dynamics 

 

Apparent Weight, Normal Force, and 

Elevators 

Have you ever wanted to lose weight? Maybe you tried 

a diet, started exercising, well let me tell you the fastest 

and quickest way to lose weight. Well before I tell you 

the answer to this question, we must learn about what 

“apparent weight” is. Apparent weight is the reading on 

a scale which measures your weight and is the feeling 

of weight rather than your actual weight which is of 

course just mass times gravity. When you are on a scale 

it actually measures your normal force not your force 

of gravity. This means any change to your normal force 

is a change in the reading of a scale which technically 

isn’t your real weight. Confusing huh? Yea it kind of is 

but there are many ways to change your normal weight 

so let’s list out some examples! 

Ways to change your normal force: 

Jumping: Before jumping, as you push down against 

the scale to propel yourself upwards, this additional 

force temporarily makes your apparent weight greater 

than your usual weight. When you are in the air your 

normal force is 0 N, so your apparent weight is 0 and 

when you eventually land back down, as you 

decelerate, you exert an increased force on the scale 

which makes your apparent weight greater.  
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Inclined Plane: As we learned in the previous unit, 

when you are on an inclined plane your normal force is 

changed depending on the angle you are standing on, 

this is why scales usually tell you to measure your 

weight on a flat surface.  

Elevators: This is the most interesting phenomenon 

which we will focus our studies on. On an elevator as 

you move upwards your apparent weight is decreased 

but as you move downwards, your apparent weight is 

increased, and we will learn why! 

So, there are two scenarios in which your apparent 

weight is changed inside of an elevator, when you are 

accelerating upwards and accelerating downwards. 

Let’s start with accelerating upwards. 

When you accelerate upwards your acceleration is 

upwards which means the total force acting on you (the 

system) will be upwards. But we know that when we are 

standing on a surface with no forces acting on us, the 

only forces we have acting on us are normal force and 

the force of gravity so how would we represent this 

additional force going upwards which makes the 

elevator and us accelerate up? 

Well essentially what happens is that your Normal 

Force will change to represent this situation. Let’s draw 

a diagram to help us understand: 
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In this diagram we can see 
a person standing in an 
elevator and the force of 
gravity of this person 
standing in the elevator is 
100 Newtons so the 
person’s mass is 10 kg, but 
something strange can be 
seen here. The person’s 
normal force is greater 

than their force of gravity. 
Since we know that the elevator is accelerating 
upwards, we know that the force exerted is also 
upwards. Let’s use Newton’s Second Law to figure out 
what’s going on.  

𝛴𝐹 = 𝑚 𝑥 𝑎 if we add up the forces in the y-axis, we get 
(125 𝑁) −  (100 𝑁) =  (10 𝑘𝑔) 𝑥 (𝑎). If we solve for 
acceleration, we see that it’s equal to 2.5 m/s2. This 
makes sense, the person is accelerating in an upwards 
direction so their acceleration must be positive. 
Essentially when a person or object is accelerating 
upwards in an elevator, their normal force must change 
to represent their acceleration. A similar phenomenon 
is seen when an elevator is moving downwards. 

Let’s look at an example to understand: 
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Here the same 10 kg 
person is on the elevator 
but now it is moving and 
accelerating downwards. 
The normal force is in 
turn smaller than the 
force of gravity. Let’s use 
Newton’s Second Law to 
explain this situation 
𝛴𝐹 = 𝑚 𝑥 𝑎: 

If we add up the forces in 
the scenario, we get: (75 𝑁) −  (100 𝑁) =  (10 𝑘𝑔)𝑥(𝑎), 
if we solve for acceleration, we see that it’s equal to                    
-2.5 m/s2 and this is exactly what we expect. The 
normal force decreases to explain the object/person 
moving downwards. 

Since we now know that we can change our apparent 
weight in an elevator, can we ever feel weightless in an 
elevator? Well, the answer to that question is yes but 
the only way to feel weightless is if the elevator is in free 
fall. This is because if we were to solve an equation to 
have a 0 N Normal force, we would have an equation 
that looks like this: 

(0𝑁) − (𝐹𝑔) = (𝑚) 𝑥 (𝑎) we would get −𝐹𝑔 = 𝑚 𝑥 𝑎 and 

if we were to replace 𝐹𝑔 with 𝑚 𝑥 𝑔 we would get                

−𝑚 𝑥 𝑔 = 𝑚 𝑥 𝑎 which simplifies to −𝑔 =  −𝑎 , which 
basically means that the acceleration of any weightless 
mass must be equal to the acceleration due to gravity 
which means it must be in free-fall! 

Let’s try some practice problems: 
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Example #1: If Arjit stands in an elevator and has a 
weight of 160 Newtons but then his apparent weight 
changes because the elevator starts to move, and his 
apparent weight suddenly becomes 200 Newtons, what 
is the acceleration of the system and is it moving up or 
down? 

 

 

 

 

 

□ Moving Up | Acceleration: ___________ N 

□ Moving Down | Acceleration: ___________ N 

 

Example #2: If Yamal has a meeting and wants to go 
from the 5th floor to the 1st floor super-fast, 
accelerating downwards at -8.2 m/s2, what would his 
apparent weight be during the ride if he normally 
weighs 120 Newtons? 

 

 

 

 

 

 Apparent Weight: ___________ N 
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Answer Key: 

Question #1: To begin solving this question we should 
draw a model of the situation: 

 The problem is asking us to find 
the acceleration on Arjit and the 
elevator. We can simply just use 
Newton’s Second Law to solve this 
problem, let’s add up the forces and 
solve for the acceleration: 

(200 𝑁)  −  (160 𝑁)  =  (20 𝑘𝑔)(𝑎) 

If we solve for acceleration, we get 
a value of 2 m/s2 and since this 
value is positive, Arjit must be 
moving upwards. 

 

Question #2: Let’s begin solving this problem by 
representing the situation with a diagram: 

To answer this question, we 
must find what the 
question is asking for. The 
question is asking for the 
Normal force acting on 
Yamal. We are given the 
acceleration of the system 
and the weight so we can 
simply use Newton’s 
Second Law to solve for the 
Normal Force: 

(𝐹𝑁)  −  (120 𝑁)  =  (12 𝑘𝑔) (−8.2 𝑚/𝑠2). If we solve 
for the normal force we get an apparent weight of 21.6 
Newtons, wow elevators really can make us lose 
(apparent) weight quickly! 
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3.11 

Dynamics 

 

Atwood Machines and Pulleys 

Have you ever used a rope and pulley to move 

something up and down easily? The way a vertical 

pulley works is when a force pulls one side of the pulley 

down, the other side is moved up. In this topic we will 

be studying the physics behind how this works and how 

to find specific parts of this scenario. We sometimes 

call these problems Atwood machine problems, but 

that’s just a fancy name for a pulley. Let’s look at what 

some of these problems could look like: 

There is a 7 kg weight on one side of an Atwood 

machine and a 1 kg weight on the other side of an 

Atwood machine. Find the force of tension on the 

string holding both the weights. Assume there is no 

friction, the pulley and the pulley and string are 

massless. 

Let’s begin answering this question by drawing a 

diagram of the situation: 
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We can see that the Force of 

tension acts upwards for 

both weights and both 

weights have a force of 

gravity acting downwards. 

The best way to find the force 

of tension is to do this 

strategy which I like to call 

“straightening out the 

system”. Essentially what we 

want to do is bend the system 

to make it straight and 

horizontal. We will define the positive direction for the 

acceleration of the entire system to be in the direction 

which the net force acts, in our scenario since the 7 kg 

will move downwards and provide the direction for the 

net force, the positive direction will be 

counterclockwise and towards the left when we 

straighten the system as shown below: 

 

As you can see, all we did was in a way “unbend” the 

pulley system, so it looks like something a lot easier to 

solve. Now to solve this question we must understand 

the difference between internal forces and external 

forces, the force of tension will be an internal force 

because it is something that is internal to the system, it 
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is inside of the system and is not a force coming from 

an external force. Something like the force of gravity is 

an external force since it’s coming from outside of the 

string-pulley system. We will solve the system 

separating external forces from internal forces. To find 

the acceleration of the system we will be using external 

forces to solve for the acceleration. We will be using 

Newton’s Second Law to solve this 𝛴𝐹 = 𝑚 𝑥 𝑎𝑠𝑦𝑠𝑡𝑒𝑚. 

Let’s add up the external forces in the x-axis 

(technically the y-axis) and we have to remember 

which direction is positive and which is negative, 

leftwards is positive and rightwards is negative: 

(70 𝑁) − (10 𝑁) = (7 𝑘𝑔 +  1 𝑘𝑔) 𝑥 𝑎𝑠𝑦𝑠𝑡𝑒𝑚. We can 

now easily solve for the acceleration of the system 

which is equal to 7.5 m/s2. Now that we have the 

external forces solved and have the acceleration of the 

system, we can now solve for the internal forces which 

are the tension forces. To solve for the tension all we 

have to do is find the force of tension on either the 7 kg 

mass or the 1 kg mass system as we know tension is 

always the same in a system. Let’s solve for the tension 

in the 7 kg mass system first.  

Let’s draw the FBD for the 7 kg system first while 

straightened out using information we previously 

learned: 
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As we can see here this is simply just a Newton’s 

Second Law problem for us to solve 

𝛴𝐹 = 𝑚 𝑥 𝑎𝑠𝑦𝑠𝑡𝑒𝑚 if we add up the forces (making sure 

the numbers are correctly positive of negative): 

(70 𝑁) − (𝐹𝑇) = (7 𝑘𝑔) 𝑥 (7.5 𝑚/𝑠2), when we solve 

for the force of tension, we get a force of tension of 17.5 

N. To prove that you can use either weight to solve the 

force of tension let’s do the same thing using the other 

weight. 

 

𝛴𝐹 = 𝑚 𝑥 𝑎𝑠𝑦𝑠𝑡𝑒𝑚 remember to correctly identify if each 

force is negative or positive. 

(𝐹𝑇) − (10 𝑁) = (1 𝑘𝑔) 𝑥 (7.5 𝑚/𝑠2). If we solve for the 

force of tension, we again see that we get 17.5 N! Now 

that we learned how to solve Atwood problems let’s do 

some practice problems: 
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Example #1: There is a 100 kg weight on one side of an 

Atwood machine and a 75 kg weight on the other side 

of an Atwood machine. Find the force of tension on the 

string holding both the weights. Assume there is no 

friction, the pulley and the pulley and string are 

massless. Find the acceleration of the system and the 

force of tension between the strings. 

 

 

 

 

 

 

 

Acceleration of the System: _____________ m/s2 

Tension between the strings: _____________ N 
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Example #2: Ricky wants to use an Atwood machine to 

lift a heavy boulder from his driveway, Ricky weighs 

200 kg and the rock weighs 150 kg. Find the force of 

tension on the string holding both Ricky and the 

boulder. Assume there is no friction, the pulley and the 

pulley and string are massless. Find the acceleration of 

the system and the force of tension between the strings. 

 

 

 

 

 

 

 

 

Acceleration of the System: _____________ m/s2 

Tension between the strings: _____________ N 
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Answer Key: 

Question #1: To answer this question the first thing we 
must do is identify the direction of the net force to 
determine the positive direction of acceleration, in this 
case since the 100 kg is heavier than the 75 kg, the 
system’s net force will be clockwise which means the 
positive direction of acceleration is towards the right 
when we straighten out the system, let’s straighten it 
out: 

 

Now we can solve for the acceleration of the system, 

let’s set up an equation using Newton’s Second Law: 

(1000 𝑁) − (750 𝑁) = (75 𝑘𝑔 + 100 𝑘𝑔) 𝑥 (𝑎𝑠𝑦𝑠𝑡𝑒𝑚). 

When we solve for the acceleration of the system we get 

1.43 m/s2. Now that we have the acceleration let’s find 

the tension by using either the 75 kg system or the 100 

kg system. Let’s use the 100 kg system but we will get 

the same answer if we use the 75 kg system as well. 

Let’s set up the equation to find the force of tension: 

(1000 𝑁) − (𝐹𝑇) =  (100 𝑘𝑔) 𝑥 (1.43 𝑚/𝑠2), when we 

solve for the force of tension we get about 857.14 N. 

Question #2: Let’s begin answering the question by 

considering the same things as we did for the previous 

problem, the acceleration of the system will be 

counterclockwise and towards the left side when we 

straighten out the system, this means that the positive 
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direction of acceleration will be leftwards. Let’s 

straighten out the system: 

 

Now that we have the system straightened out, we can 

solve for the acceleration of the system:  

(2000 𝑁) − (1500 𝑁) = (200 𝑘𝑔 + 150 𝑘𝑔) 𝑥 (𝑎𝑠𝑦𝑠𝑡𝑒𝑚), 

when we solve for the acceleration, we get 1.43 m/s2. 

Now let’s solve for the force of tension using the 150 kg 

boulder system: 

(𝐹𝑇) − (1500 𝑁) = (150 𝑘𝑔) (1.43 𝑚/𝑠2), when we 

solve for the force of tension, we get 1714.29 N!  

Now you know how to solve Atwood machine 

problems! 
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3.12 

Dynamics 

 

Modified Pulleys 

We recently learned about Atwood machines but now 

let’s learn about a different rendition of the Atwood 

machine… Drum roll please… The modified pulley. It’s 

revolutionary! The modified pulley has one weight on 

a surface which can only move horizontally, and 

another weight off the surface which moves vertically 

upwards or downwards, this means that the pulley off 

the surface will cause the acceleration of the weight on 

the horizontal surface. Let’s look at an example to 

understand the situation: 

Frank places a 20 kg heavy metal block on a frictionless 

table and attaches the block to a string on a pulley 

which is being pulled down by a 10 kg metal block. Find 

the acceleration of the system and the force of tension 

on the string. 

Let’s draw a 

diagram of 

the problem:  
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Modified pulley questions are pretty similar to Atwood 

machine problems and hanging system problems so we 

can use our knowledge from previous units to 

understand how to solve these types of questions. The 

first thing we will be doing as always is creating a FBD, 

let’s make one for the 20 kg block system and one for 

the 10 kg block system. Let’s start with the 20 kg block: 

 

Now for the 10 kg block system: 

 

We can notice that the force of tension is a Newton’s 

Third Law pair, and it is equal in both systems even 

though it is facing two different directions. To solve for 
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the force of tension we can have to find the acceleration 

of the system, since the acceleration is going to be 

downwards caused by the force of gravity by the 10 kg 

block the only force causing the net force will be the 10 

kg block’s force of gravity. The 20 kg block will not be 

a part of the net force except for its mass because it is 

sitting horizontal and not causing a force in the y-axis. 

We can set up the equation as such:                                  

(100 𝑁) = (20 𝑘𝑔 + 10 𝑘𝑔) 𝑥 (𝑎𝑠𝑦𝑠𝑡𝑒𝑚), when we solve 

for the acceleration, we get about 3.33 m/s2. Now that 

we have the acceleration of the system, we can solve for 

the tension just like we did for previous Atwood 

machine problems. We can use either system to solve 

for the force of tension, let’s use the 20 kg block system. 

Let’s set up the equation like this: 

𝐹𝑇 = 𝑚 𝑥 𝑎𝑠𝑦𝑠𝑡𝑒𝑚 and when we plug in the value, we get 

𝐹𝑇 = (20 𝑘𝑔) 𝑥 (3.33 𝑚/𝑠2) and we get a force of 

tension of 66.67 Newtons. When we do the same for the 

other system, we set up an equation that looks like this: 

𝐹𝑔 − 𝐹𝑇  =  𝑚 𝑥 𝑎𝑠𝑦𝑠𝑡𝑒𝑚  and when we plug in the values 

we get (100 𝑁) − 𝐹𝑇  =  (10 𝑘𝑔) 𝑥 (3.33 𝑚/𝑠2), this 

gives us a force of tension of 66.67 Newtons just as we 

would expect.  

* Remember that we consider the positive direction 

of acceleration as the direction which the net force 

goes towards, this is super important for problems 

like these! * 

Let’s do a practice problem to understand this topic 

better: 
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Example #1: There is a 15 kg cart on top of a frictionless 

table which is connected to a weightless rope on a 

pulley attached to a 12 kg bookbag. Find the force of 

tension on the rope and the acceleration of the system? 

 

 

 

 

 

 

 

 

 

 

Acceleration: ______________ m/s2 

Force of Tension: _____________ N 
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Answer Key: 

Let’s begin answering this 

question by creating the FBD 

for both the 15 kg cart system 

and the   12 kg book bag 

system, let’s start with the 15 

kg system: 

 

And for the 12 kg system: 

 

To solve for the acceleration 

of the system we have to 

consider what causes the 

net force, in our situation 

it’s the force of gravity of 

the 12 kg bookbag. Let’s set 

up our Newton’s Second 

Law equation: 

 

 (120𝑁)  =  (12 𝑘𝑔 +  15 𝑘𝑔) (𝑎𝑠𝑦𝑠𝑡𝑒𝑚), when we solve 

for the acceleration of the system, we get a value of 

4.44 m/s2. Now let’s solve for the force of tension, as 

we know we can use either system. Let’s use the 15 kg 

system: (𝐹𝑇) = (15 𝑘𝑔) 𝑥 (4.44 𝑚/𝑠2), when we solve 

the equation for the force of tension, we get 66.67 N! 
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3.13 

Dynamics 

 

Spring Force 

Boing, boing, boing, have you ever used a slinky and 

noticed the way it stretches and unstretches? Well, we 

can actually measure the force from this spring and in 

later units we can learn the energy that this spring 

contains! The formula is simple, we call it Hooke’s Law: 

𝐹𝑠  =  −𝑘𝑥 essentially what this equation means is that 

the spring force is equal to the distance a spring 

stretches or compresses (x) multiplied by a constant 

(k), we call this constant the “spring constant” which 

should come as no surprise. This force is negative 

because it works to restore a string back to its 

equilibrium position where there is no compression or 

extension. The units for the spring constant are (N/m) 

and they represent how “stiff” or “stretchy” a spring is, 

it tells us how much force is needed to be applied to a 

spring to stretch or compress it 1 meter. Let’s take a 

look at an example: 

Example… Raymond stretches a spring that has a 50 kg 

block attached to it. The spring constant is 400 N/m 

and Raymond stretches it a distance of 0.5 meters. 

Find the spring force provided by the spring. 

Let’s answer this question by first drawing a diagram 

of this situation: 
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When the spring is in equilibrium the spring force is 

equal to 0 N, but when it is stretched or compressed 

there will be a spring force. To solve for how much this 

force is equal to we will just simply use the equation 

and plug in the known values: 

𝐹 = −(400 𝑁/𝑚) (0.5 𝑚), we get a spring force also 

known as the “𝐹𝑠” which is equal to -200 Newtons, the 

value is negative to let us know that this force will act 

leftwards to make the block move leftwards to its 

equilibrium position. The value of the mass attached 

does not matter! Let’s practice with some practice 

problems: 
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Example #1: Juan attaches a 10 kg mass to a vertical 

spring with a spring constant of 250 N/m. The spring 

stretches until it reaches its equilibrium position. What 

is the displacement of the spring from its original 

position? 

 

 

 

Displacement: ______________ meters 

Example #2: Anto compresses a horizontal spring with 

aspiring constant of 200 N/m a distance of 0.4 meters. 

What is the magnitude of the force required to hold the 

spring in this compressed position? 

 

 

 

Force: ____________ Newtons 

Examples #3: Aiden stretches a spring with an 

unknown spring constant 0.25 meters which exerts a 

force of 50 N. Find the spring constant. 

 

 

 

Spring Constant: _____________ N/m 
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Answer Key: 

Question #1: 

Let’s answer this question by first drawing a diagram 

to represent the situation: 

 

We are basically trying to find when the force of gravity 

by the mass will be balanced by the spring force. This 

is what we call equilibrium. Let’s draw a FBD of what 

that would look like: 

 

As we can see, we are trying to find when the spring 

force is equal to 100 N which balances out the force of 

gravity and makes the spring achieve equilibrium. 
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Since 𝐹𝑠 is equal to 100 N and we know the spring 

constant is equal to 250 N/m, let’s just plug in the 

known values to find the displacement.  

(100𝑁)  =  −(250 𝑁/𝑚) (𝑥), if we solve for the value of 

x, we find that it is equal to 0.4 meters. 

Question #2: This question is pretty straightforward, 

we are essentially just trying to find the spring force 

and we have all the given information needed to find 

that, let’s plug in the known values into our equation: 

𝐹𝑠  =  −𝑘𝑥, when we plug in the values we have we get 

𝐹𝑠 = -(200 N/m)(0.4 m) and we get a spring force of -

80 Newtons.  

Question #3: To solve for the spring constant we can 

just use our spring force equation and solve for our 

missing variable: 𝐹𝑠  =  −𝑘𝑥, let’s plug in what we have: 

(50 𝑁)  =  −𝑘(0.25 𝑚) when we solve for the spring 

constant value “𝑘” we get a value of 200 N/m. Spring 

force equations are pretty easy and straightforward! 
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3.14 

Dynamics 

 

Universal Law of Gravitation 

When an apple falls from a tree, we learned that a force 

called gravity causes it to fall and accelerate until it hits 

the ground. Well, what about the gravity between two 

planets? We can’t just use our regular equation                    

𝐹 =  𝑚𝑔 in this situation because we don’t have the 

acceleration due to gravity. Hmm…. What should we 

do? Well Sir Isaac Newton thought of that, he created 

an equation known as the Universal Law of Gravitation 

to find the force of gravity between any two objects 

whatever distance away from each other. The equation 

is:  

𝐹𝑔 = 𝐺
𝑚1𝑚2

𝑟2 , this equation essentially states that if you 

multiply the masses of two objects and divide it by the 

square of the distance between each of their centers of 

gravity, and finally multiply by a constant “𝐺” a.k.a “Big 

𝐺”, we can get the force of gravity between both objects. 

The value of “𝐺” was calculated after Newton’s death by 

Henry Cavendish who found the value to be a very 

specific number which is (6.67 x 10-11m3kg-1s-2). Yea 

this is a very specific number with a bunch of units but 

luckily for our case we won’t need to memorize the 

units because most of them will cancel out when we do 

our multiplication and division! Gravity is pretty 

interesting, the force of gravity felt between two objects 
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will be the same magnitude, one force will not be 

greater than the other when comparing the force of 

gravity between two objects. Another thing to consider 

is that if you are just looking for the acceleration due to 

gravity rather than the force of gravity, we can simplify 

the equation into this: 

𝑔 = 𝐺
𝑀

𝑟2
, we don’t need to include the mass of one of 

the objects, which object you may be asking? To find 

the acceleration due to gravity, we do not include the 

object with the lesser mass between the two, instead we 

include the heavier object as the mass used in the 

equation.  

Let’s try a problem out: 

Example… Niel loves space, and his favorite celestial 

object is the Moon. He wants to find the force of gravity 

between his favorite celestial object, the Moon and his 

home planet Earth. If the mass of the moon is about 

7.35 × 1022 kg and the mass of Earth is about 5.98 x 1024 

kg. The average distance between the Moon and the 

Earth is 3.84 × 108 meters, the mean radius of Earth is 

6.37 × 106 meters, and the mean radius of the Moon is 

about 1.74 × 106 meters. Find the force of gravity 

between both celestial objects.  

To solve this equation all we have to do is plug in our 

values into our equation, one thing to consider is that 

the distance between both objects must include the 

distances between both of their radii, this means for the 

“𝑅” value we must add up all the given values, let’s see 

what that would look like:  
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𝐹𝑔 = (6.67 𝑥 10−11)
(5.98 𝑥 1024 𝑘𝑔)(7.35 𝑥 1022 𝑘𝑔)

(3.84 𝑥 108 𝑚+1.74 𝑥 106 𝑚+ 6.37 𝑥 106 𝑚)2
. 

When we solve for the force of gravity, we get a value of 

about 1.91 x 1020 N. The most important thing to 

consider when doing these types of equations is that 

you MUST square the distance.  

Let’s try to solve for the acceleration due to gravity on 

Earth now! 

Mario, who weighs 100 kg, sits on the surface of the 

Earth. Mario recently forgot the value of the 

acceleration due to gravity on Earth and wants to 

determine this value! Mario has only some 

information, the mass of the Earth is 5.98 x 1024 kg, and 

the mean radius of the Earth is about 6.37 x 106 meters. 

Help Mario figure out the acceleration due to gravity 

on the Earth based on the known information.  

To solve this question, we will be using our second 

equation, to determine which mass to use for this 

equation we have to choose the object with more mass, 

so in our case the mass of the Earth, not Mario’s mass. 

Now let’s plug in these values into our equation: 

𝑔 = 𝐺
𝑀

𝑟2, 𝑔 = (6.67 𝑥 10−11)
(5.98 𝑥 1024 𝑘𝑔)

(6.37 𝑥 106 𝑚)2 . When we 

solve for the acceleration due to gravity, we find that we 

get a value of 9.83 m/s2. We know that the known value 

of the acceleration on Earth is about 9.81 m/s2, our 

value is super close and is something that makes sense! 

Wow, it’s crazy how you can find information like this 

using simple physics equations! Let’s try some example 

problems: 
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Example #1: If the gravitational force between two 

objects is 𝐹 when they are separated by a distance 𝑟, 

what will be the new force if the distance is halved, and 

the masses of both objects are doubled? Write your 

answer in terms of 𝐹. 

 

 

 

 

 

Force: ___________ F 

Example #2: Two spheres, each of mass 5 kg, are 

placed 0.2 m apart. Calculate the gravitational force 

between them. If the distance between them is 

doubled, what happens to the gravitational force, does 

it double, half, etc. Answer with words rather than with 

a numerical value? 

 

 

 

 

 

Force: ___________ N 

Force After Distance is Doubled: _______________ 
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Example #3: A satellite orbits the Earth at a distance of 

1.2 × 107m from the center of the Earth. The mass of 

the Earth is 5.98 × 1024 kg Calculate the gravitational 

force acting on the satellite if its mass is 500 kg. 

 

 

 

 

 

 

 

Gravitational Force: ___________ N 
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Answer Key: 

Question #1: To solve this question let’s consider what 

the original equation would look like if all the values 

are kept as they are: 𝐹𝑔 = 𝐺
𝑚1𝑚2

𝑟2 ,, now if we were to 

plug in ½ 𝑟 for the value of 𝑟 and plug in 2𝑚1 and 

2𝑚2 let’s see what the equation would simply to:                 

𝐹′ = 𝐺
2𝑚12𝑚2

(
1

2
𝑟2)

, if we were to simplify this we would get  

𝐹′ = 𝐺
4𝑚1𝑚2

(1/4)𝑟2
, now we can find the ratio between 𝐹’ and 

𝐹 to see what 𝐹’ is in terms of 𝐹. Let’s plug in 5 for both 

mass variables and 100 for our 𝑟 value. For both the 

original equation and the new equation:                                     

𝐹 = (6.67 𝑥 10−11)
(5 𝑘𝑔)(5 𝑘𝑔)

(100 𝑚)2 , 𝐹 would equal to                   

1.6675 x 10-13 N, if we plug in the same values into the 

new equation we get: 𝐹′ = (6.67 𝑥 10−11)
4(5 𝑘𝑔)(5 𝑘𝑔)

(1/4)(100 𝑚)2,  

when we solve for F’ we get a value of 1.0672 x 10-11 N, 

if we divide 𝐹’ by 𝐹 we get 64. This means the 𝐹’ is 64 

times greater than 𝐹 which is the original force. There 

are many ways to solve these types of questions with 

only variables and no numbers, plugging in numbers is 

one of the best strategies to easly solve these questions 

without needing to do some complex and tedious 

algebra! 

Question #2: Let’s calculate the gravitational force 

between both spheres first. All we have to do is plug in 

the known values into our equation which would look 

like this: 𝐹𝑔 = (6.67 𝑥 10−11)
(5 𝑘𝑔)(5 𝑘𝑔)

(0.2 𝑚)2
, we get a force of 
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gravity of 4.17 x 10-8 Newtons. Now if the distance is 

doubled, we can multiply the 0.2 m by 2 to get a value 

of 0.4 m, if we plug that back into our equation and 

solve for the force of gravity we get a value 1.04 x 10-8 

Newtons. Now if we divide this value by the original 

force we get 0.25, that means if the distance is doubled, 

the force is 1/4 th of the original value!  

Question #3: This question is pretty simple and just 

tests our calculator skills, all we have to do is input 

these values into our equation and solve for the force of 

gravity, the equation would look like this:                                  

𝐹𝑔 = (6.67 𝑥 10−11)
(5.98 𝑥 1024 𝑘𝑔)(500 𝑘𝑔)

(1.2 𝑥 107 𝑚)2 , if we correctly 

input these values into our calculator we should get a 

value of 1384.95 Newtons! 
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3.15 

Dynamics 

 

Centripetal Force 

Have you ever turned sharply in a car and felt yourself 

being pushed against the sides of the car? Well, this 

phenomenon is known as centripetal force and 

centripetal acceleration. We know how velocity works 

for a linear and straight system, but for a system 

moving in a circular path how would that work? Well, 

the equation we use for the centripetal acceleration is 

𝑎𝐶 =
𝑣2

𝑅
, and for our centripetal force, our equation is 

very similar, it is 𝐹𝐶 =
𝑚𝑣2

𝑅
. The centripetal force is a net 

force so the equations can get a bit interesting. Let’s try 

a simple example first: 

Example… If there is a 

100 kg car traveling at a 

speed of 5 m/s around a 

circular track which has 

a radius of 100 meters. 

Find the centripetal 

force acting on the car. 

You may be wondering 

why there is acceleration and thus a force if the car is 

traveling at a constant speed. This is because as you 

know velocity is a vector which means it’s direction or 

magnitude could change for there to be a change in its 
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acceleration. Clearly the direction of the velocity is 

constantly changing as the car moves around the track 

which means there is acceleration.  But which way 

would the force and acceleration point towards? Well, 

if we were to find where there average of all the velocity 

vectors would point in every point in the circular track, 

we would see that the acceleration acts towards 

the center of the circle. That means that the force 

would also act towards the center. One final thing to 

consider is that the velocity vector is a tangential 

velocity, this means that if the circular track were to 

stop suddenly, the car would continue traveling in the 

same direction as its velocity vector. These are all very 

interesting things to consider but now since we have 

this information, we can solve for the centripetal force. 

Let’s plug in our knowns to our equation: 𝐹𝐶 =
𝑚𝑣2

𝑅
. 

when we plug in our values, we get an equation that 

looks like this 𝐹𝐶 =
(100 𝑘𝑔)(5 𝑚/𝑠)2

(100 𝑚)
, we get a centripetal 

force of 25 Newtons! 

Now that we have learned about horizontal centripetal 

acceleration and force, we can learn about vertical 

centripetal acceleration and force. Since we know that 

centripetal acceleration is a net force, we have to 

consider if other forces like normal force or the force of 

gravity are a part of the equation. Let’s take a look at 

the two types of vertical problems: 
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Example at the Top of a Circle: Let’s say a mass is 

attached to a string and is being spun in a circular path 

vertically, find the force of tension on the string at the 

TOP of the circle. 

 

Let’s solve this question in terms of variables so we can 

apply the knowledge to any other question like this. 

First thing we have to consider is that the centripetal 

acceleration is a net force, that means that the equation 

would look like this 𝛴𝐹𝑐  =  𝑚𝑎𝑐, so let’s add up what 

the forces would be that act as the net force, since we 

know the direction of the net force will be towards the 

center and at this instant that would be downwards, we 

can consider the net force to be positive in the 

downwards direction. This would mean that the force 

of tension and the force of gravity, as they both act 

downwards, would both be postive. So, our equation at 

the top will look like this 𝐹𝑇𝑜𝑝 + 𝑚𝑔 = 𝑚𝑎𝑐 , from there 

we can solve for the force of tension at the top. 
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Example at the Bottom of a Circle: Let’s say a 

mass is attached to a string and is being spun in a 

circular path vertically, find the force of tension on the 

string at the BOTTOM of the circle. 

 

Here we would do a similar setup but now let’s consider 

the direction of the net force. It would be upwards as 

that’s the direction of the center of the circle. This 

means that the force of tension would be positive as it 

acts in the same direction as the net force, but the force 

of gravity would be negative as it acts away from the 

direction of the net force. So, our equation would look 

like this 𝐹𝐵𝑜𝑡𝑡𝑜𝑚 − 𝑚𝑔 = 𝑚𝑎𝑐.  

Now that we have learned how to manipulate vertical 

circles, we can learn about roller coasters! 
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Let’s talk about the centripetal force at two different 

instances on a rollercoaster. First at the top of a curve 

and then at the bottom. Here’s what both scenarios 

would look like: 

 

Let’s first talk about the scenario at the bottom of a 

curve! 

At the bottom of a curve do you 

think you would feel heavier or 

lighter? Well let’s find out using 

our newfound knowledge of 

centripetal acceleration! 

At the bottom of a curve, we know that the centripetal 

force will be pointing upwards, towards the center of 

the circle/curve. Knowing that, we also know that there 

is a normal force as there is a contact point with the 

curve, and there is a force of gravity. The normal force 
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will be upwards towards the center of the curve while 

the force of gravity will be negative and downwards as 

it acts away from the center of the curve. If we were to 

set up an equation for this scenario, we would get that: 

𝐹𝑁 − 𝑚𝑔 =  𝑚𝑎𝑐  which would tell us that the normal 

force would be an addition of the centripetal 

acceleration force and the force of gravity if we 

rearrange the equation. This essentially means we 

would feel heavier as our apparent weight is greater at 

the bottom of a curve in a roller coaster, cool huh? Well 

let’s learn about what happens at the top of a curve. 

Do you ever have that 

weightless feeling or an 

emptiness in your stomach at 

the top of a curve on a roller 

coaster? Well let’s explain the 

physics behind that! 

We know that the net force acts 

towards the center of the circle, here it will be acting 

downwards, the normal force will be acting upwards 

away from the center which will make it negative, and 

the force of gravity will be acting downwards in the 

positive direction towards the net force. If we set up the 

equation, we would get 𝑚𝑔 − 𝐹𝑁 =  𝑚𝑎𝑐   which would 

mean that the normal force would be equal to the force 

of gravity minus the centripetal force. This would mean 

that the normal force is less than the force of gravity 

giving us that weightless feeling! Centripetal 

acceleration is really cool and can be applied to many 
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things! Let’s complete some practice problems now 

that we have learned all this new information! 

Example #1: A racecar driver drives around a circular 

track at 20 m/s. The track’s radius is 200 meters and 

the driver, and his car weigh a total of 500 kg. Find the 

centripetal force acting on the driver and his car. 

 

 

 

 

 

 

Centripetal Force: ______________ N 

Example #2: Brianna spins a 5 kg hammer around in a 

vertical circle using a string at a constant velocity of                       

3 m/s. The length of the string is 5 meters. Find the 

force of tension on the string at the top of the circular 

path. 

 

 

 

 

 

Force of Tension at The Top: ______________ N 



Uddin & Agolli 

 

[156] 
 

Example #3: Paul is on a rollercoaster going at a 

constant speed of 10 m/s. Paul and rollercoaster weigh 

a total 1000 kg, find the apparent weight of Paul and 

the cart at the bottom of a circular loop with a radius of 

3 meters. 

 

 

 

 

 

 

 

Apparent Weight: ______________ N 
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Answer Key: 

Question #1: For this question we will simply just plug 

in the given values into our equation for the centripetal 

force which is: ∑𝐹𝐶 =
𝑚𝑣2

𝑅
. When we plug in the values 

given to us, we get an equation that looks like this:                      

∑ 𝐹𝐶 =
(500 𝑘𝑔)(20 𝑚/𝑠)2

(200 𝑚)
 when we solve for the force, we 

get a value of 1000 Newtons! 

Question #2: For this question we can use our equation 

that we derived before for the force of tension at the top 

of a vertical circular loop. Our equation is                                

𝐹𝑇𝑜𝑝 + 𝑚𝑔 = 𝑚𝑎𝑐 but if we manipulate it to find only 

the force of tension at the top, we get an equation that 

looks something like this: 𝐹𝑇𝑜𝑝 = 𝑚𝑎𝑐 − 𝑚𝑔when we 

plug in our given values we get this: 

𝐹𝑇𝑜𝑝 =
(5 𝑘𝑔)(3 𝑚/𝑠)2

(5 𝑚)
− (5 𝑘𝑔)(−10 𝑚/𝑠2), if we solve for 

the force value we get a value of 59 Newtons. 

Remember to make sure that the value of the 

acceleration due to gravity is a negative value here 

since direction matters.  

Question #3: This question is similar to question 2, 

let’s take our equation for roller coasters which 

involves the cart at the bottom of a circular loop to 

solve for the apparent weight, better known as the 

normal force. Our equation is 𝐹𝑁 − 𝑚𝑔 =  𝑚𝑎𝑐, when 

we move around the variables to solve for the normal 

force we get an equation that looks like this:                              

𝐹𝑁 = 𝑚𝑔 +  𝑚𝑎𝑐, let’s plug in our knowns and solve for 
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the normal force. Our equation with all our knowns 

plugged in will look like this: 

 𝐹𝑁 =
(1000 𝑘𝑔)(10 𝑚/𝑠)2

(3 𝑚)
+ (1000 𝑘𝑔)(−10 𝑚/𝑠2), when 

we solve for the normal force, we get a value of 

23,333.33N. The person would feel significantly 

heavier during this part of the ride! 
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4.1 

Energy & Momentum 

 

Momentum: Mass in Motion 

Momentum is considered to be the “quantity of 

motion”, but what is it? And what are its applications 

in physics? Momentum is a common value seen across 

physics, and thus it was given a name and present in 

many equations. 

Momentum is expressed as: 

𝑝 =  𝑚𝑣 

Where 𝑚 is mass and 𝑣 is velocity.  

This means that a heavy object with a non-zero velocity 

has more momentum than a lighter object with the 

same velocity, and an object with a greater velocity has 

more momentum than an identical object with less 

velocity.  

We can actually express Newton’s Second Law in terms 

of momentum. This has uses as it allows us to see the 

relationship between force and change in momentum. 

With change in momentum being p = mv: 

𝐹 =  𝑚𝑎 

𝐹 =  𝑚
𝛥𝑣

𝛥𝑡
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𝐹 =  
𝛥𝑝

𝛥𝑡
 

We can see through this equation that if a force is being 

applied on a system for any amount of time, it will incur 

a change in the object’s momentum. If a small force is 

applied for a long period of time, it will result in the 

same change in momentum as a large force being 

applied for a short period of time. This change in 

momentum "𝑝" is also known as impulse. The units for 

momentum are kg⋅m/s which can also be written as 

N⋅s. Let’s try some examples with our new knowledge.  

Example #1: A soccer ball that weighs 5 kg is moving at 

a constant velocity of 4 m/s. What is its momentum? 

 

 

 

Momentum: _____________ kg⋅m/s 

Example #2: A car gets hit by another car from the back 

with a force of 1000 N over a period of 0.1 seconds. 

What is the change in momentum of the car, assuming 

the surface is frictionless? 

 

 

 

Change in Momentum: _____________ N⋅s 
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Example #3: A 150 kg sailboat going at a constant 

velocity of 6 m/s encounters a humongous wave with a 

force of 1200 N. After 3 seconds, the wave passes. What 

is the sailboat’s new momentum? 

 

 

 

Momentum: _____________ kg⋅m/s 

 

 

Answer Key: 

Example #1: Since we know the mass and velocity of 

the soccer ball, all we need to do to find the momentum 

of the ball is to plug into the momentum equation                  

𝑝 =  𝑚𝑣. Doing this, we find 

 𝑝 =  (5 𝑘𝑔)(4 𝑚𝑠)  =  20  kg ⋅ m/s 

 

Example #2: Using the equation 𝐹 =  
𝛥𝑝

𝛥𝑡
, we can plug 

in our values for F and t to solve for p, the change in 

momentum. We find that 𝛥𝑝 =  𝐹𝛥𝑡 by multiplying 

both sides by 𝑡. Plug in 1000 N for 𝐹 and 0.1 s for 𝑡. 

 𝑝 =  (1000 𝑁)(0.1 𝑠)  =  1000 N ⋅ s 
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Example #3: The question asks for the final 

momentum of the sailboat, meaning we need to first 

find the initial momentum and the impulse. To find the 

initial momentum, we can plug in 150 kg for the mass 

of the sailboat and 6 m/s for the velocity in 𝑝 =  𝑚𝑣. 

We find 𝑝 =  (150 𝑘𝑔)(6 𝑚/𝑠)  =  900 kg ⋅ m/s for the 

initial momentum. Next, we can use the equation    

𝛥𝑝 =  𝐹𝛥𝑡 to find the impulse: 

 𝛥𝑝 = (−1200 𝑁)(3 𝑠) = −3600N ⋅ s  (The force of the 

wave is negative as it is opposite in direction to the 

sailboat’s motion). Finally, we need to find the sum of 

the initial momentum and impulse. 

𝑝𝑓 = 𝑝𝑖 + 𝛥𝑝 =  (900 kg ⋅ m/s) + (−3600 N ⋅ s)

=  −2700 kg ⋅ m/s 
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4.2 

Energy & Momentum 

 

Work, Energy, and Power 

When we think of work, we often think about careers, 

but what is it in physics? Work is defined as energy 

transfer as a result of an external force being applied to 

a system over a displacement. Let’s take a look at the 

equation: 

𝑊 =  𝐹𝑑𝑐𝑜𝑠(𝜃) 

Where 𝑊 is work, 𝐹 is the magnitude of the external 

force, 𝑑 is the magnitude of the displacement, and 𝜃  is 

the angle between the force and displacement vectors.  

We know what the definition of work is, but what does 

it mean in practical terms? If we push a heavy object 

across the surface of the floor, then work is being done 

on that object; the force we apply is causing the object 

to be displaced. Now, imagine holding that heavy 

object in your hands and you start walking. Although 

the force you are applying is vertical to counteract the 

force of gravity, the object is being displaced in the 

horizontal direction. Since the force vector and 

displacement vectors are perpendicular, then the work 

being done by you is equal to 0 as 𝑐𝑜𝑠(90°)  =  0.  

Looking back at the definition of work, we see that it is 

also a transfer of energy. If you rub your hands against 

each other, you can actually feel this transfer of energy. 
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Your hands are doing work on one another through 

friction and are being displaced, and this is transferred 

through heat energy, which is why your hands feel 

warmer after rubbing them together. How can we 

express this transfer of energy using math? 

We can find net work by substituting net force for 𝐹. 

Doing so gives us: 

𝑊𝑛𝑒𝑡 =  𝐹𝑛𝑒𝑡𝑑 (we are able to remove 𝑐𝑜𝑠(𝜃)as net force 

will always be parallel to the displacement, thus the 

angle between the force and displacement vectors is 0, 

and cos(0°) = 1. 

Using this, we can substitute 𝐹𝑛𝑒𝑡 for 𝑚 𝑥 𝑎 as stated by 

Newton’s Second Law. 

𝑊𝑛𝑒𝑡 = 𝑚 𝑥 𝑎 𝑥 𝑑 

Finally, using the kinematic equation 𝑣𝑓
2 = 𝑣𝑖

2 + 2𝑎𝑑, 

we get the following: 

𝑊𝑛𝑒𝑡 = 𝑚(
𝑣𝑓

2 − 𝑣𝑖
2

2𝑑
)𝑑 

𝑊𝑛𝑒𝑡 =
1

2
𝑚𝑣𝑓

2 −
1

2
𝑚𝑣𝑖

2 

This equation is the work-energy theorem, and states 

that net work equals a change in the quantity 
1

2
𝑚𝑣𝑓

2. But 

what does this have to do with energy? 

1

2
𝑚𝑣𝑓

2 is actually a quantity we call linear kinetic 

energy (KE), which is the energy of an object with 

mass which is in motion. But kinetic energy is only one 
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facet of what we call energy. All energy is either 

potential or kinetic, and the total energy within a 

system is called mechanical energy.  

Kinetic energy, as stated before, has to do with motion. 

Any object that has mass and moves has kinetic energy. 

For example, heat energy is kinetic as it is simply the 

vibration or movement of particles.  

Potential energy (𝑃𝐸 𝑜𝑟 𝑈) is energy that is stored. 

For example, a rock on top of a hill has gravitational 

potential energy as the height of the rock gives it the 

capacity to roll down. We will explore types of potential 

energy in future lessons. 

Mechanical energy is the sum of kinetic and 

potential energy (𝑀𝐸 = 𝐾𝐸 +  𝑃𝐸), and always 

remains constant unless an external force is being 

applied on the system. Mechanical energy always 

changes when work is done on a system. 

Work and energy also possess the same units, joules 

(𝐽), which are equal to Newton-seconds (Ns) or 

kilogram-meters per second square (kgm/s2). 

Finally, relevant to work and energy is power. When we 

think of power, laser beams or explosions often come 

to mind. But in physics, power is defined as the rate at 

which work is done.  

𝑃 =  
𝑊

𝑡
 

The units for power are watts (𝑊), where one watt is 

equal to one joule per second. 
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Let’s try some example problems: 

Example #1: Find the work done by a person applying 

a force of 30 N on a box 60° above the horizontal over 

a displacement of 5 meters. 

 

 

 

Work: _____________ J 

Example #2: A 50 kg person is ice skating at a constant 

velocity of 4 m/s to the right when their friend pushes 

them to the right with a force of 100 N over 6 meters. 

What is the person's new velocity? 

 

 

 

Velocity: _____________ m/s 

Example #3: Computers use a power supply unit to 

power each part. A power supply unit boasts a wattage 

of 750 W. How much work is done by this power supply 

unit over a time period of 20 seconds? 

 

 

 

Work Done Over Time: ____________ Watts 
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Answer Key: 

Example #1: Looking at the work equation 𝑊 =

 𝐹𝑑𝑐𝑜𝑠(𝜃), we see that we have all the values necessary 

to solve the work. This gives us 

𝑊 = (30 𝑁)(5 𝑚)𝑐𝑜𝑠(60°) = 75 𝐽. 

Example #2: Since we need to find the person’s final 

velocity after the push, we need to find the final kinetic 

energy. We can do this by taking the initial kinetic 

energy and adding the work done during the push. For 

our initial kinetic energy, we get  

𝐾𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =
1

2
(50 𝑘𝑔)(4 𝑚/𝑠)2 = 400 𝐽. Now, we need to 

find the work (the change in energy due to the work-

energy theorem): 𝑊 = (100 𝑁)(6 𝑚)𝑐𝑜𝑠(0°) = 600 𝐽. 

Finally, we add the work to the initial kinetic energy to 

get the final 𝐾𝐸: 𝐾𝐸𝑓𝑖𝑛𝑎𝑙 = 400 𝐽 +  600 𝐽 = 1000 𝐽. 

Using this, we can take the kinetic energy formula and 

solve for our velocity.  

𝐾𝐸𝑓𝑖𝑛𝑎𝑙 =
1

2
𝑚(𝑣𝑓𝑖𝑛𝑎𝑙)

2 

2𝐾𝐸𝑓𝑖𝑛𝑎𝑙

𝑚
= (𝑣𝑓𝑖𝑛𝑎𝑙)2 

√
2𝐾𝐸𝑓𝑖𝑛𝑎𝑙

𝑚
= 𝑣𝑓𝑖𝑛𝑎𝑙 

Plugging in our known values in this equation, we get 

approximately 6.3 m/s for 𝑣𝑓𝑖𝑛𝑎𝑙 . 
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Example #3: We know 𝑃 =
𝑊

𝑡
, so if we multiply both 

sides by 𝑡 we get 𝑃𝑡 = 𝑊. We know power and the time, 

so we just plug it in to find the work: 

 (750 𝑊)(20 𝑠)  =  1500 𝐽 =  𝑊. 
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4.3 

Energy & Momentum 

 

Gravitational Potential Energy 

One of the most commonly seen examples of potential 

energy is gravitational potential energy. Gravitational 

potential energy represents a separation of two objects 

which are attracted gravitationally. Knowing that work 

represents a change in energy, we can use this to find 

the gravitational potential energy. Since the object is at 

equilibrium, then work done must have a force equal in 

magnitude but opposite in direction to gravity.  

𝑊 = 𝛥𝑃𝐸 =  𝐹𝑑 𝑐𝑜𝑠𝜃 =  1 (in this case as the force 

and distance vectors have an angle of 0° between them) 

𝛥𝑃𝐸𝑔  =  −𝐹𝑔𝑑  

𝛥𝑃𝐸𝑔 = 𝑚𝑔𝛥ℎ (h represents the distance between the 

two objects) 

Also, we can solve for potential energy using the 

following force equation: 

𝐹𝑔 = 𝐺
𝑚1𝑚2

𝑟2 . However, since we are not using the Earth, 

and potential energy is relative, we need to set our 

“zero point” where the potential energy is equal to zero. 

On Earth, we set this zero point to the ground, where 

𝑃𝐸 increases as you move further away from the 

ground.  Seeing how work is needed to separate masses 

as they are attracted by gravity, then a distance of ∞ 
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between the two objects is our maximum possible 

gravitational potential energy. Because of this, it is 

convenient for us to set the zero point as the maximum 

potential energy where the distance 𝑟 between the two 

objects equals ∞. As 0 J is the maximum possible 

potential energy, anything lower than that must be 

negative, which explains why we include the negative 

sign in the final equation. 

𝛥𝑃𝐸𝑔   =  −𝐹𝑔𝑑 

𝛥𝑃𝐸𝑔   =  −𝐺
𝑚1𝑚2

𝑟2
 (Since 𝑑 and 𝑟 represent the same 

value, we can substitute 𝑟 for 𝑑) 

𝛥𝑃𝐸𝑔 =   −𝐺
𝑚1𝑚2

𝑟
 

Both equations for gravitational potential energy are 

valid depending on the reference frame chosen. Let’s 

solve some practice problems to understand this new 

concept: 

Example #1: Find the gravitational potential energy of 

a 0.5 kg toy ball at a height of 20 m. 

 

 

 

 

 

𝑃𝐸: _______________ J 
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Example #2: A 2000 kg satellite orbits the Earth at a 

distance of 2 × 106 m away from the center of the Earth. 

Given the gravitational constant G = 6.7 × 10-11 and the 

mass of the earth is 6 × 1024 kg, find the gravitational 

potential energy of the satellite.  

 

 

 

 

 

 

𝑃𝐸: _______________ J 

Example #3: Jimmy throws a 0.1 kg coin into a 5 m 

deep wishing well for good luck. What is the velocity of 

the coin right as it is about to hit the bottom of the well? 

(Use 10 m/s2 for gravitational acceleration.) 

 

 

 

 

 

 

Velocity: ________________ m/s 
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Answer Key: 

Example #1: We simply plug in the known values into 

the formula 𝑃𝐸𝑔  =  𝑚𝑔ℎ . This gives us a final answer 

of 𝑃𝐸𝑔  = (0.5 𝑘𝑔)(10 𝑚/𝑠2)(20 𝑚)  =  100  𝐽. 

Example #2: Since the satellite and Earth are separated 

by a large distance, it is likely that the gravitational 

field strength “𝑔” measured on Earth’s surface will give 

us an inaccurate answer. Thus, we need to use the 

formula 𝛥𝑃𝐸𝑔   =  −𝐺
𝑚1𝑚2

𝑟2   to find the potential 

energy. We need to plug our values into the equation. 

−(6.7 𝑥 10−11)
(2000 𝑘𝑔)(6 𝑥 1024 𝑘𝑔)

(2 𝑥 106 𝑚)2 =  −4.02 𝑥 1011 𝐽. 

Example #3: We know potential energy can be 

converted to kinetic energy, and that mechanical 

energy is conserved if no work is done to put in or take 

out energy from the system. In this case, we know that 

the mechanical energy is conserved in our coin-Earth 

system. For most convenience, we can set the bottom 

of the well to our zero point where ℎ =  0. As the coin 

approaches the zero point, its potential energy will be 

converted (h gets smaller and smaller, v gets bigger and 

bigger) to kinetic energy. This means that the instant 

before the coin touches the bottom, the potential 

energy at the beginning will equal the kinetic energy at 

the end.  

𝑚𝑔ℎ𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =
1

2
𝑚(𝑣𝑖𝑛𝑖𝑡𝑖𝑎𝑙)2 

2𝑔ℎ =  (𝑣𝑓𝑖𝑛𝑎𝑙)
2 
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√2gh = 𝑣𝑓𝑖𝑛𝑎𝑙 

Plugging in our known values, we get a final velocity of 

10 m/s. 
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4.4 

Energy & Momentum 

 

Elastic Energy 

Ever notice how when you compress or pull a spring 

really hard, it starts to oscillate back and forth? This is 

an example of something called elastic energy. 

Elastic energy represents the energy stored within an 

object after work is applied and is a type of potential 

energy. When you stretch a rubber band or pull a 

spring, you are doing work onto the object causing an 

elastic deformation and elastic energy to be stored in 

this object.  

Elastic energy (𝑃𝐸𝑠) is given by the equation: 

𝑃𝐸𝑠 =
1

2
𝑘𝛥𝑥2 

Where 𝑘 is the spring constant and 𝑥 the change in 

position from the object’s equilibrium. Equilibrium is 

a state where no net work is being done to the object, 

and thus the object experiences no deformation. In a 

spring, this would look like the spring’s original 

position without being pushed or pulled.  

Elasticity means that the object is able to go back to its 

original state, but what happens when you apply so 

much force that the object can’t revert? In this case, the 

object is incapable of storing all the energy which was 
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transferred to it in the form of elastic energy. Let’s do 

some practice problems based on this topic. 

Example #1: A spring has a constant k = 0.5 N/m and 

is stretched 0.2 m. What is the elastic potential energy 

of the spring? 

 

 

 

 

 

PEs: _____________________ J 

Example #2: A 5 kg block slides on a frictionless 

surface with a constant velocity of 4 m/s. The block 

then comes into contact with a spring with constant k 

of 6N/m. What distance is the spring stretched? 

 

 

 

 

 

 

Δx: _______________________ m 
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Example #3: What is the work done to a spring with 

constant k of 32 N/m after being stretched 4 meters? 

 

 

 

 

 

 

Net Work: _______________________ J  

Answer Key: 

Example #1: We simply need to plug into the formula 

𝑃𝐸𝑠 =
1

2
𝑘𝛥𝑥2 with our known values. We find                      

𝑃𝐸𝑠 =
1

2
(0.5

𝑁

𝑚
) (0.2 𝑚)2 = 0.01 𝐽. 

Example #2: We can convert the kinetic energy of the 

block to the elastic potential energy of the spring, as 

work is being done by the block to transfer energy into 

the spring.  

𝐾𝐸𝑏𝑙𝑜𝑐𝑘 = 𝑃𝐸𝑠 

1

2
𝑚𝑏𝑙𝑜𝑐𝑘𝑣𝑏𝑙𝑜𝑐𝑘 =

1

2
𝑘𝛥𝑥2 

𝑚𝑏𝑙𝑜𝑐𝑘𝑣𝑏𝑙𝑜𝑐𝑘

𝑘
= 𝛥𝑥2 

√
𝑚𝑏𝑙𝑜𝑐𝑘𝑣𝑏𝑙𝑜𝑐𝑘

𝑘
= 𝛥𝑥 
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Plugging in our known values for the mass of the block, 

velocity of the block and the spring constant, we find 

that the spring is stretched by approximately 1.8 

meters. 

Example #3: We know that the spring force is                           

𝐹𝑠 = −𝑘𝑥, and work is 𝑊 = 𝐹𝑑𝑐𝑜𝑠(𝜃) . We can plug the 

spring force into the equation to find that                                     

𝑊 = 𝑘𝛥𝑥2𝑐𝑜𝑠(𝜃)  (𝑑 can be substituted by 𝛥𝑥 as they 

are the same value). This gives us                                                    

𝑊 =  (32 𝑁/𝑚)(4 𝑚)2𝑐𝑜𝑠(180°) = −512 𝐽. The reason 

𝜃 is 180° because the force and displacement vectors 

are opposite in direction; as you pull the spring, the 

force is attempting to compress it back to its original 

state. 
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4.5 

Energy & Momentum 

 

Law of Conservation 

Both momentum and energy are conserved values. But 

what does this mean? 

Momentum is conserved on any system should the 

external net force be equal to 0. This means that even 

if the momentum of the parts in the system change, the 

momentum of the entire system remains the same if no 

external force is applied to it. If a ball is thrown and hits 

a stationary block, then the momentum of each object 

changes, but the momentum of the ball-block system 

remains the same. This principle applies no matter how 

many objects are in this system. 

We can use the mathematical definition of impulse to 

visualize this principle: 

𝛥𝑝 =  𝐹𝛥𝑡  

𝛥𝑝 =  0𝑁 𝑥 𝛥𝑡  

𝛥𝑝  =  0 𝑁 𝑥 𝑠 

Since the change in momentum is equal to zero, then 

momentum must be constant.  

We can also represent this principle with the following: 

𝑝𝑡𝑜𝑡𝑎𝑙,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑝𝑡𝑜𝑡𝑎𝑙,𝑓𝑖𝑛𝑎𝑙 
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Where 𝑝𝑡𝑜𝑡𝑎𝑙,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =  𝑝1,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝑝2,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + ⋯  𝑎𝑛𝑑  

𝑝𝑡𝑜𝑡𝑎𝑙,𝑓𝑖𝑛𝑎𝑙 =  𝑝1,𝑓𝑖𝑛𝑎𝑙 + 𝑝2,𝑓𝑖𝑛𝑎𝑙+. ..  

Momentum is also independent based on direction, so 

horizontal momentum may be conserved despite a 

changing vertical momentum. 

Similarly, energy follows a principle of conservation. 

Mechanical energy (the sum or total energy in a system 

if you recall) remains constant unless work is done on 

that system.  

𝑀𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑀𝐸𝑓𝑖𝑛𝑎𝑙 

For example, let's take the example of a ball dropping 

from rest on Earth and set our system to the ball-Earth 

system. Even though the ball has its maximum 

gravitational potential energy at the very start of 

motion where its position is the greatest and the 

maximum kinetic energy at the bottom where its 

velocity is the greatest, the total mechanical energy will 

remain constant as no energy from outside the system 

was transferred in.  

Additionally, the law of conservation of energy 

states that energy cannot be created nor destroyed, 

rather it can only be transferred from one system to 

another or transformed into another form. Everywhere 

around us, we experience this transformation and 

transference of energy. When water turns a water 

wheel, the kinetic energy is transformed into electrical 

energy. When an object hits a spring, the kinetic energy 

of the object transfers to a system of the object and the 
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spring, also transforming into elastic energy. Let’s try 

some practice problems with this new concept! 

Example #1: A 2 kg block slides across a frictionless 

surface at a constant velocity of 5 m/s. Eventually, the 

block comes into contact with a stationary 5 kg block 

and sticks to it. What is the new velocity of the 2 kg 

block? 

 

 

 

 

 

Velocity: ______________ m/s 

Example #2: A 3 kg block slides across a frictionless 

surface at a constant velocity of 6 m/s. It comes into 

contact with a stationary 10 kg block. After the 

collision, the 10 kg block has a constant velocity of 10 

m/s. What is the new velocity of the 3 kg block? 

 

 

 

 

 

Velocity: ______________ m/s 



Uddin & Agolli 

 

[182] 
 

Example #3: A 0.7 kg ball falls from rest at a height of 

10 meters. What is the final mechanical energy of the 

ball-Earth system?  

 

 

 

 

 

 

Mechanical Energy: ____________ J 

Answer Key: 

Example #1: We know that momentum is conserved in 

this situation as there is no net force acting on the two 

block system. Because of this, we can set up our 

conservation of momentum equation. 

𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑝𝑓𝑖𝑛𝑎𝑙 

𝑝1,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝑝2,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑝𝑓𝑖𝑛𝑎𝑙 

𝑚1𝑣1 + 𝑚2𝑣2 = (𝑚1 + 𝑚2)𝑣𝑓𝑖𝑛𝑎𝑙 

Since the two blocks stick after they come into contact, 

we need to add their masses together for the final 

momentum.  

(2 𝑘𝑔)(5 𝑚/𝑠)  +  (5 𝑘𝑔)(0 𝑚/𝑠)

=  (2 𝑘𝑔 +  5 𝑘𝑔)𝑣𝑓𝑖𝑛𝑎𝑙 
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10 𝑘𝑔𝑚/𝑠 = (7 𝑘𝑔)𝑣𝑓𝑖𝑛𝑎𝑙 

1.43 𝑚/𝑠 ≅  𝑣𝑓𝑖𝑛𝑎𝑙 

The question asks for the velocity of the 2 kg block, but 

technically the answer we got was the velocity of the 

entire system. However, since the 2 kg block is stuck 

with the 5 kg block, then the velocity of the system is 

the same as the velocity of the block. 

Example #2:  Similarly to the last problem, there is no 

net force acting upon the system, so we can set up a 

conservation of momentum equation.  

𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑝𝑓𝑖𝑛𝑎𝑙 

𝑝1,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝑝2,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑝1,𝑓𝑖𝑛𝑎𝑙 + 𝑝2,𝑓𝑖𝑛𝑎𝑙 

𝑚1𝑣1,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝑚2𝑣2,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑚1𝑣1,𝑓𝑖𝑛𝑎𝑙 + 𝑚2𝑣2,𝑓𝑖𝑛𝑎𝑙 

Now, we just plug in our values: 

(3 𝑘𝑔)(6 𝑚/𝑠)  + (10 𝑘𝑔)(0 𝑚/𝑠)

= (3 𝑘𝑔)𝑣1,𝑓𝑖𝑛𝑎𝑙 + (10 𝑘𝑔)(10 𝑚/𝑠) 

18 𝑘𝑔𝑚/𝑠 + 0 𝑘𝑔𝑚/𝑠 = (3 𝑘𝑔 )𝑣1,𝑓𝑖𝑛𝑎𝑙 + 100 𝑘𝑔𝑚/𝑠 

−82 𝑘𝑔𝑚/𝑠 = (3 𝑘𝑔)𝑣1,𝑓𝑖𝑛𝑎𝑙 

−27.3 𝑚/𝑠 ≅ 𝑣1,𝑓𝑖𝑛𝑎𝑙 

We see that in this case, the velocity is negative. This 

means that in order to conserve the momentum in this 

system, the 3 kg block changes direction. 
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Example #3: In this scenario, no net work is being done 

to the ball-Earth system. This means that the 

mechanical energy will be conserved and the change in 

mechanical energy throughout the motion will be equal 

to 0. Thus, we can simply find initial mechanical 

energy. At the very top of the motion, the ball is at rest, 

meaning that 𝐾𝐸 =  0. We know 𝑀𝐸 =  𝑃𝐸 +  𝐾𝐸, so 

if 𝐾𝐸 =  0, 𝑀𝐸 = 𝑃𝐸. By finding the initial 

gravitational potential energy, we end up finding the 

mechanical energy of the system.  

𝑀𝐸 =  𝑃𝐸𝑔,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

𝑀𝐸 =  𝑚𝑔ℎ 

𝑀𝐸 =  (0.7 𝑘𝑔)(10𝑚/𝑠2)(10 𝑚) 

𝑀𝐸 =  70 𝐽 

Our final mechanical energy is 70 J. 

  



A High Schooler’s Guide to Physics 

[185] 
 

4.6 

Energy & Momentum 

 

Elastic & Inelastic Collisions 

In physics, we consider two different types of 

collisions, elastic and inelastic. A collision is defined 

as a sudden contact between two objects. How do these 

two collisions differ? 

An elastic collision means that no kinetic energy is lost 

within a system. When two objects collide elastically, 

then the sum of their initial kinetic energies is equal to 

the sum of their final kinetic energies. True elastic 

collisions only happen on an extremely small scale and 

at ideal circumstances. 

Inelastic collisions are any collision that is not 

considered elastic. In an inelastic collision, kinetic 

energy is lost due to internal forces, causing this energy 

to be transferred elsewhere. A perfectly inelastic 

collision is two objects sticking together after colliding, 

as it loses the most kinetic energy. 

Both collisions observe conservation of momentum. As 

long as no external force is being applied to the system, 

then no matter how the objects interact, the 

momentum of the system will be conserved. For 

example, if two objects collide and stick together, then 

the sum of the momentum of each object will be equal 

to the momentum of the two objects stuck together. 
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4.7 

Energy & Momentum 

 

Conservative & Non-Conservative 

Forces 

When looking at energy, forces are split up into two 

categories: conservative and non-conservative.  

Work is defined by the equation 𝑊 =  𝐹𝑑𝑐𝑜𝑠(𝜃), where 

𝑑 is displacement. As we learned in the kinematics 

chapter, displacement doesn’t necessarily mean 

distance. So, is there any change in work if we consider 

the distance the object travels? 

This is the difference between conservative and non-

conservative forces. A conservative force means that 

the work done by the force does not change depending 

on the path taken by the object. This means that if we 

consider the distance the object travels, the work done 

by a conservative force should be the same. An example 

of a conservative force is gravity. No matter how the 

object moves, the work done by gravity will always be 

the same. This is because work done by gravity only 

depends on the final change of height.  

A non-conservative force does depend on the path 

taken. For example, friction is a non-conservative force 

as the more distance an object travels in between the 

start and end points, the more time friction is being 

applied compared to the displacement of an object. 
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Another way to look at conservative and non-

conservative forces is that conservative forces only 

depend on the start and end point of the object while 

non-conservative forces rely on the entire motion. 
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Chapter 5 

 

Rotational Motion 
  



A High Schooler’s Guide to Physics 

[189] 
 

5.1 

Rotational Motion 

 

Radians 

You might’ve seen radians (symbol rad) being used as 

a substitute for degrees. They are the SI unit for angle 

measurement and are commonly used in physics. But 

where do they come from? A radian is defined as the 

angle where the arc length of a circle is equal to the 

radius. In total, a circle has 2𝜋 radians.  

𝜃 =
𝑠

𝑟
 

Where 𝜃 is the angle measure, 𝑠 is the arc length, and 𝑟 

is the radius. When 𝑠 and 𝑟 are equal, 𝜃 = 1. Thus, our 

definition of the radian. 

Since there are 2𝜋 radians and 360 degrees in a circle, 

we can use this to convert between the different angle 

measurements. 

𝜃𝑟𝑎𝑑𝑖𝑎𝑛𝑠 𝑥 
180

𝜋
= 𝜃𝑑𝑒𝑔𝑟𝑒𝑒𝑠 

For reference, 1 rad is approximately 57.3 degrees. 
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5.2 

Rotational Motion 

 

Angular Displacement, Angular 

Velocity, and Angular Acceleration 

In this book, we’ve talked about linear and projectile 

motion, but the scope of motion far exceeds that. In 

this chapter, we’ll explore rotational motion, which 

is the motion of an object traveling in a circular path. 

Luckily, rotational motion follows a lot of the same 

principles that we’ve seen previously in kinematics.   

As with any physics problem, we need to define our 

reference point and axis of motion. We’ve seen right as 

positive and left as negative in linear motion… but this 

time we aren’t moving linearly. So, what should we do? 

Instead, we can define our axes by clockwise and 

counterclockwise rotation. For our reference point, we 

need to define where the angle measure equals 0. 

Imagine a Ferris wheel that is just starting up and 

rotating clockwise. Let’s set the very bottom of the 

wheel to 𝜃 = 0 𝑟𝑎𝑑 and clockwise motion to positive. If 

the Ferris wheel rotates clockwise to an angle of 2 rad, 

then we say its angular displacement is equal to 2 rad. 

Angular displacement, similar to linear displacement, 

is a vector and the difference between the final and 

initial angular positions.  
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Using the same example of the Ferris wheel, let’s say 

that after the initial startup, it rotated 2 radians in 10 

seconds. If we find the change in angular position per 

second (which is 2 radians divided by 10 seconds), we 

get a quantity known as angular velocity. The angular 

velocity is also a vector and is the rate of angular 

displacement. We find that the angular velocity of the 

Ferris wheel is 0.2 radians per second (rad/s), meaning 

that every second, the Ferris wheel will rotate 0.2 

radians. 

We said that the Ferris wheel was just starting up from 

rest, and now rotates at an angular velocity of 0.2 

rad/s. Now, let’s say that it took the Ferris wheel 5 

seconds to fully start. If we see how the angular velocity 

changes in this time, we find a quantity known as 

angular acceleration. Angular acceleration, like the 

previous quantities, is a vector and describes how the 

angular velocity changes per second. In this example, 

we know the angular velocity changes from 0 to 0.2, 

and took 5 seconds to get to that point, meaning that 

the angular acceleration throughout that time was      

0.04 rad/s2. 
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5.3 

Rotational Motion 

 

Rotational Kinematic Equations 

There is obviously a parallel between linear and 

rotational kinematics described in the previous 

chapter, but how does this reflect in the rotational 

kinematic equations? 

The rotational kinematic equations are: 

1.  𝜃𝑓 = 𝜃𝑖 + 𝜔𝑡 +
1

2
𝛼𝑡2 

3. 𝜔𝑓 = 𝜔𝑖 + 𝛼𝑡 

4. 𝜔𝑓
2 = 𝜔𝑖

2 + 2𝑎𝛥𝜃 

Where 𝜃 is angular position, 𝜔 is angular velocity, and 

𝑎 is angular acceleration. 

The first equation solves for the final angular position 

given initial angular position, angular velocity, angular 

acceleration and time. The second equation solves for 

final angular velocity given  

We can see that the parallel goes past just conceptually, 

but mathematically too. The rotational kinematic 

equations are simply the linear kinematic equations 

with the angular quantities replacing the linear 

quantities. We can manipulate these equations to give 

us the desired quantities. When faced with a physics 

problem, it is best to make your selection of which 

equation to use after listing all your known quantities.  
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Since the equations and quantities are nearly identical, 

then analyzing motion graphs in rotational kinematics 

is nearly the same as linear kinematics, as well! We 

previously said that the slope of a position vs time 

graph is equal to the velocity of the moving object, and 

the slope of the velocity vs time graph is equal to the 

acceleration. Turns out, this also applies for angular 

quantities! Let’s try some example problems: 

 

Example #1: A record is placed into a record player at 

rest and after 0.5 seconds rotates at a constant angular 

velocity of 0.7 rad/s. What is the angular acceleration 

of the record player from when the record is placed to 

when it starts to rotate at a constant velocity? 

 

 

 

 

 

 

 

 

𝛼: ___________________ rad/s2 
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Example #2: A person gets on a bicycle which is at rest. 

After the bicycle wheels have made 135 revolutions, the 

angular velocity of the wheel is 10 rad/s. What is the 

angular acceleration of the bicycle wheels? 

 

 

 

 

 

 

 

𝛼: ___________________ rad/s2 

Example #3: A centrifuge starts at rest and has a 

constant acceleration of 100 rad/s2. After 45 seconds, 

how many revolutions has the centrifuge made? 

 

 

 

 

 

 

 

𝛼: ___________________ rad/s2 
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Answer Key: 

Example #1: We are given time, final angular velocity, 

and initial angular velocity and need to find the angular 

acceleration. Based off this information, the equation 

with the best fit is 𝜔𝑓 = 𝜔𝑖 + 𝛼𝑡. We can simply plug in 

our known values into the equation to solve for the 

angular acceleration. 

𝜔𝑓 = 𝜔𝑖 + 𝛼𝑡 

(0.7 𝑟𝑎𝑑/𝑠) = (0 𝑟𝑎𝑑/𝑠) + 𝛼(0.5 𝑠) 

When we solve for the rotational acceleration, we find 

that our answer is 1.4 rad/s2. 

Example #2: Looking at the problem, we see that we 

are given the initial angular velocity, final angular 

velocity, and angular displacement. All we need to find 

is the angular acceleration, and based off the example 

the best fitting equation is 𝜔𝑓
2 = 𝜔𝑖

2 + 2𝑎𝛥𝜃. Let’s plug 

in our values: 

𝜔𝑓
2 = 𝜔𝑖

2 + 2𝑎𝛥𝜃 

(10 𝑟𝑎𝑑/𝑠)2 = (0 𝑟𝑎𝑑/𝑠)2 + 2𝑎(848.23 𝑟𝑎𝑑) 

When we solve for our angular acceleration, we get a 

value of 0.059 rad/s2. 

Example #3: In this example, we’re given an angular 

acceleration of 100 rad/s2 and a time of 45 seconds, all 

while trying to find the angular displacement. Since the 

centrifuge starts from rest, we can say that the initial 

angular velocity is equal to 0 rad/s. The equation of 
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best fit would be 𝜃𝑓 = 𝜃𝑖 + 𝜔𝑡 +
1

2
𝛼𝑡2as it has all the 

necessary values we need to find our answer. 

𝜃𝑓 = 𝜃𝑖 + 𝜔𝑡 +
1

2
𝛼𝑡2 

𝜃𝑓 = (0 𝑟𝑎𝑑) + (0 𝑟𝑎𝑑/𝑠)(45𝑠) +
1

2
(100 𝑟𝑎𝑑/𝑠2)(45𝑠)2 

When we solve for the 𝜃𝑓, we find it is equal to 101250 

rad. 

However, this isn’t our final answer. The question is 

asking for how many revolutions have occurred after 

45 seconds, not the angular displacement in radians. A 

revolution is the full turn of a spinning object. We know 

that a circle has 2π radians, so we need to divide the 

value we got by 2π. This gives us a value of 16114.43… 

However, because we’re looking at full revolutions, we 

can neglect everything after the decimal point—giving 

us the final answer of 16114 revolutions! 
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5.4 

Rotational Motion 

 

Torque 

Remember when we learned about forces? Well, the 

force equivalent for the rotational motion unit is 

known as torque. Torque is defined as the measure of 

a force which causes a rotation. If a force causes a 

change in the motion of a linear object, then torque is 

a force which causes a motion of a rotational body. The 

equation of torque is equal to the force applied on an 

object multiplied by the distance the force is applied 

from the pivot point. The pivot point is where the 

object will rotate, unless specifically mentioned by the 

question the pivot point will be the center of gravity of 

an object. The equation of torque looks like this:                   

𝜏 =  𝑟𝐹𝑠𝑖𝑛Ө 

The sine theta is extremely important as if a force is 

applied at an angle, the torque applied will be less than 

if the force was acting straight on the object. Also, the 

larger the distance from the pivot point (which is the 

“𝑟” value known as the radius) the greater the torque 

will be. The units for torque are Nm (newton-meters). 

Let’s take a look at an example: 
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Example… Sean sits on a seesaw 2 meters right from 

the pivot point. Sean weighs 50 kg and applies a torque 

directly downwards on the seesaw. Cael sits on the 

other side of the seesaw 1 meter from the pivot point. 

He weighs 70 kg and applies a torque directly 

downwards on the seesaw. Find the direction of the 

torque and its magnitude.  

To begin answering this question we should first draw 

a diagram of what is happening: 

 

Now that we have a diagram, we must learn one more 

concept. If a torque is applied which causes a system to 

rotate clockwise, the torque is considered negative. If 

a torque is applied which causes a system to rotate 

counterclockwise, the torque is considered positive. 

From our example, Cael will cause the seesaw system 

to rotate counterclockwise while Sean will cause the 

seesaw system to rotate clockwise. The force applied is 

just the weight of each person so we will simply find 
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their weight by multiplying their mass with the 

acceleration due to gravity on Earth. Now that we know 

this information, let’s use our equation to solve for the 

total torque of the system. One important piece of 

information to consider is that if a force is acting 

perpendicular to the surface such as in this scenario, 

the angle for the sine theta value will be equal to 

𝑠𝑖𝑛(90°) which is just equal to 1. Let’s first find the 

torque exerted by Sean, if we plug in the information, 

we know into our equation remembering that the value 

will be negative as the torque is clockwise, we get an 

equation that looks like this:                                                                            

𝜏 =  −(2 𝑚)(500 𝑁)𝑠𝑖𝑛(90°). When we solve this to 

find the torque, we get a value which is -1000 Nm. Now 

let’s find the torque of Cael, 𝜏 =  (1 𝑚)(700 𝑁)𝑠𝑖𝑛(90°) 

which is equal to 700 Nm. Now let’s add both torques 

together, −1000 𝑁𝑚 +  700 𝑁𝑚 gives us -300 Nm. 

This means that the torque is equal to 300 Nm in the 

negative direction which is the clockwise direction. 

What would the torque of Cael’s force be if it was acting 

at an angle of 70°. Let’s try to answer this question. 

Essentially all we will be changing in the equation for 

Cael is the sine theta value. Let’s plug in 70° for the 

angle.  𝜏 =  (1 𝑚)(700 𝑁)𝑠𝑖𝑛(70°) , when we solve the 

equation for the value of the torque, we see that it is 

equal to 657.78 Nm which is less than the 700 Nm we 

had when using 90°. This means that the maximum 

torque is when the angle is equal to 90° and anything 

more or less than this angle will mean there is less 

torque than the maximum possible when using 90°. 
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5.5 

Rotational Motion 

 

Newton's Second Law for Rotational 

Motion 

We understand that torque is simply just force about 

an axis. Previously, we also went over Newton’s Laws, 

one of the most important contributions to our 

understanding of forces. Do these laws relate to 

torque? 

Truth is, they definitely do. Throughout this chapter, 

we have seen rotational motion act as a parallel to 

linear motion with nearly identical equations and 

concepts. This same parallel also applies to Newton’s 

2nd Law. If you recall, Newton’s 2nd Law states: 

𝐹𝑛𝑒𝑡 = 𝑚 𝑥 𝑎 

Where 𝐹𝑛𝑒𝑡 is the net force, 𝑚 is the mass, and 𝑎 is the 

acceleration. 

Since force and torque are parallels, this equation also 

applies to torque, just with a little change. The new 

equation is: 

 𝜏𝑛𝑒𝑡 = 𝐼 𝑥 𝛼 

Where  𝜏𝑛𝑒𝑡is net torque, 𝐼 is rotational inertia, and 𝛼 is 

angular acceleration.  
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Wait a minute… What's rotational inertia? Why is it 

taking the place of mass? As we understand it, mass is 

a measure of the inertia of an object—how “lazy” it is. 

Meanwhile, mass isn’t enough when describing 

rotational motion as two wheels could have the same 

mass but look and act differently. For example, a ring 

and a coin might have the same mass, but because the 

ring is hollow in the middle and the coin is not, this 

causes a difference in how they roll down. 

In essence, rotational inertia is a measure of how “lazy” 

an object is, just while rotating about an axis. 

Rotational inertia can be calculated, but only in certain 

situations. If an object is a “point mass”, a mass which 

can be represented by a point (like a planet in orbit, for 

example), then its rotational inertia can be calculated 

by 𝐼 =  𝑚𝑟2. The units for rotational inertia are kg·m2. 

Let’s try some practice problems! 

Example #1: A 30 kg kid sits on a massless seesaw 

which is at rest. The kid sits 1 meter from the center of 

the seesaw. What is the kid’s angular acceleration? 

 

 

 

 

 

 

Angular Acceleration: ______________ rad/s2 



Uddin & Agolli 

 

[202] 
 

 

Example #2: A person turns a bottle cap with rotational 

inertia of 0.5 kg·m2 at angular acceleration of 0.3 

rad/s2. What is the torque the person is applying? 

 

 

 

 

 

 

Torque: ______________ Nm 

Example #3: A water wheel with rotational inertia of 

5000 kg·m2 is newly installed and starts from rest. 

After 30 seconds of being in contact with the water, the 

wheel has made 12 revolutions. What is the torque 

being applied by the water? 

 

 

 

 

 

 

Torque: ______________ Nm 
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Answer Key: 

Example #1: In order to solve this problem, we need to 

make use of Newton’s Second Law and the 

mathematical definitions of torque and rotational 

inertia. We know that  𝜏𝑛𝑒𝑡 = 𝐼 𝑥 𝛼, and that                               

𝜏 = 𝑟𝐹𝑠𝑖𝑛(𝜃) and 𝐼 =  𝑚𝑟2, so we can plug these to the 

original equation. 

𝑟𝐹𝑠𝑖𝑛(𝜃) =  𝑚𝑟2𝛼 

𝐹𝑠𝑖𝑛(𝜃) =  𝑚𝑟𝛼 

Since the child is sitting down on the seesaw, 𝐹 must be 

the weight of the child, 𝑠𝑖𝑛(𝜃) =  can be removed as the 

force of gravity is perpendicular to the radius of the 

seesaw, meaning the angle is 90 degrees 𝑠𝑖𝑛(90°)  =  1. 

Force of gravity is given by 𝐹𝑔 = 𝑚𝑔, so let’s plug in mg 

for the value 𝐹. 

𝑚𝑔 =  𝑚𝑟𝛼 

𝑔 =  𝑟𝛼 

10𝑚/𝑠2 = (1 𝑚)𝛼 

If we solve for the angular acceleration, we can see that 

our answer is that the kid has an angular acceleration 

of 10 rad/s2. 
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Example #2: For this example, we simply just plug in 

our rotational inertia and angular acceleration into 

Newton’s Second Law. 

 𝜏𝑛𝑒𝑡 = 𝐼 𝑥 𝛼  

 𝜏𝑛𝑒𝑡 = (0.5 𝑘𝑔 · 𝑚2)(0.3 𝑟𝑎𝑑/𝑠2)  

When we solve for the torque, our answer is 0.15 Nm. 

Example #3: We are given the rotational inertia, 

angular displacement, and time, and are looking for the 

torque from the water. Looks like we need to call back 

to our rotational kinematic equations! Because we have 

the displacement and the time, and know that the 

wheel starts from rest, we can find the angular 

acceleration. The wheel makes 12 revolutions after 30 

seconds, and since a revolution is a full turn of a circle 

and a circle has 2π radians, we need to multiply 12 by 

2π for the angular displacement in radians. This gives 

us an angular displacement of approximately 75.4 

radians. 

𝜃𝑓 = 𝜃𝑖 + 𝜔𝑡 +
1

2
𝛼𝑡2 

(75.4 𝑟𝑎𝑑) = (0 𝑟𝑎𝑑) + (0 𝑟𝑎𝑑/𝑠)(30 𝑠) +
1

2
𝛼(30 𝑠)2 

(75.4 𝑟𝑎𝑑) =
1

2
𝛼(900𝑠2) 

When we solve for the angular acceleration, we get a 

value of about 0.17 rad/s2. Now that we have the 

angular acceleration and the rotational inertia, we can 
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simply plug in to Newton’s Second Law to find the 

torque. 

𝜏 = 𝐼 𝑥 𝛼 

𝜏 = (5000 𝑘𝑔 · 𝑚2)  𝑥 (0.17 𝑟𝑎𝑑/𝑠2) 

Our final value for the torque caused by the water is 

equal to 850 Nm. 
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 5.6 

Rotational Motion 

 

Angular Momentum 

Angular momentum is exactly what it sounds like: 

momentum about an axis. Looking at our definition of 

momentum, if we just substitute our linear values for 

angular values, we find that angular momentum is: 

𝐿 = 𝐼 𝑥 𝜔 

Where 𝐿 is angular momentum, 𝐼 is rotational inertia, 

and 𝜔  is angular velocity. 

Also, using Newton’s Second Law for torque, we can 

also find a definition for the change in angular 

momentum. With 𝛥𝐿 = 𝐼𝛥𝜔 and 𝜏𝛥𝑡 = 𝛥𝐿. 

If you notice, the mathematical definitions for angular 

momentum are similar to linear momentum, just with 

the values switching. Then, if we set our torque to 0, we 

see this: 

0 · 𝛥𝑡 = 𝛥𝐿 

0 = 𝛥𝐿 

We see that if the net torque on the system is 0, then 

there will be no change in momentum. In other words, 

the final angular momentum will be equal to the initial 

angular momentum should there be no net torque 

acting upon the system. This is the principle of the 
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conservation of angular momentum and applies 

in all cases and all systems in classical mechanics. The 

units for angular momentum are kg·m2/s. Let’s try 

some practice problems based on this concept! 

Example #1: A wheel with rotational inertia 15 kg·m2 

spins at a constant angular velocity of 3 rad/s. What is 

the wheel's angular momentum? 

 

 

 

 

 

Angular Momentum: ___________ kg·m2/s 

Example #2: What is the change in angular momentum 

in a screw after a person applies a torque of 14 Nm for 

4 seconds? 

 

 

 

 

 

 

Change in Angular Momentum: _________ kg·m2/s 
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Answer Key: 

Example #1: We can just plug in the given values into 

our definition for angular momentum. 

𝐿 = 𝐼 𝑥 𝜔 

𝐿 = (15 𝑘𝑔 · 𝑚2)  𝑥 (3 𝑟𝑎𝑑/𝑠) 

When we solve for the angular momentum of the 

wheel, we find that it is 45 kg·m2/s. 

Example #2: The change in angular momentum is 

equal to the torque times time, which conveniently 

happens to be the values we are given in the example. 

Therefore, all we have to do is plug into the equation. 

𝛥𝐿 = 𝜏𝛥𝑡  

𝛥𝐿 = (14 𝑁𝑚)(4 𝑠)  

When we solve for the change in the angular 

momentum, we find that the value is equal to                             

56 kg·m2/s. 
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5.7 

Rotational Motion 

 

Rotational Kinetic Energy 

Finally, let’s talk about the role energy plays in 

rotational motion. We know that linear kinetic energy 

is equal to the value 
1

2
𝑚𝑣2, but the velocity is linear, 

meaning that we cannot use it while observing 

rotational motion. We talked about how rotational 

inertia plays the role of mass in angular motion, so we 

need to use it instead of mass. 

By doing these modifications, we get the following 

value: 
1

2
𝐼𝜔2. This is what we call rotational kinetic 

energy. Rotational kinetic energy is the energy of 

motion of objects moving about an axis. The change of 

rotational kinetic energy is also equal to the work done 

by net torque, just as the change of linear kinetic energy 

is equal to the work done by net force.  

Work done by torque is similar to work done by force. 

As you might guess, it involves replacing the linear 

values from our work by force equation with angular 

values. This results in work by torque being given by 

the equation 𝑊 = 𝜏𝛥𝜃. The units for this version of 

energy are still of course Joules (J)! Let’s try some 

practice problems that involve rotational energy! 
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Example #1: A disk with rotational inertia 2.4 kg·m2 

spins at a constant angular velocity of 20 rad/s. What 

is the disk’s rotational kinetic energy? 

 

 

 

 

 

 

 

Rotational Kinetic Energy: _______________ J 

Example #2: A ball with rotational inertia 5 kg·m2 is 

rolling with an angular speed of 2 rad/s when a person 

exerts a torque of 30 Nm on it. This torque is applied 

to the ball for an angular displacement of 22 rads. What 

is the new angular velocity of the ball? 

 

 

 

 

 

 

Angular Velocity: _______________ rad/s 



A High Schooler’s Guide to Physics 

[211] 
 

Answer Key: 

Example #1: In this example, we’re given all the values 

we need to find the rotational kinetic energy: the 

rotational inertia and the angular velocity. So, let’s do 

it! 

𝐾𝐸 =
1

2
𝐼𝜔2 

𝐾𝐸 =
1

2
(2.4 𝑘𝑔 · 𝑚2)(20 𝑟𝑎𝑑/𝑠)2 

When we solve for the rotational kinetic energy, we find 

that the value is equal to 480 J. 

Example #2: In this problem, we need to find the final 

angular velocity, which we can do by finding the final 

rotational kinetic energy. Let’s brainstorm ways to do 

this. So, in this problem, we’re given the rotational 

inertia and the initial angular velocity. This means we 

can find the initial rotational KE. However, how can we 

translate the initial KE to the final KE? In the example, 

we know the torque applied and the angular 

displacement of the ball. Earlier, we learned that work 

done by torque is equal to torque times angular 

displacement, and work is equal to the change in KE. 

Thus, we can find the initial KE, add the work done by 

torque to find the final KE, and from there find the final 

angular velocity. Let’s try it out! 

𝐾𝐸 =
1

2
𝐼𝜔2 

𝐾𝐸𝑖 =
1

2
(5 kg · 𝑚2)(2 𝑟𝑎𝑑/𝑠)2 
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The initial kinetic energy is equal to 10 J. Now let’s 

solve for the work! 

𝑊 = 𝜏𝛥𝜃 

𝑊 = (30 𝑁𝑚)(22 𝑟𝑎𝑑) 

The value of the work is equal to 660 J, and so the 

change in kinetic energy is also 660 J. All we need to do 

now is just add the change in energy to the initial 

energy to find the final energy, and then the final 

angular velocity. 

𝐾𝐸𝑓 = 𝐾𝐸𝑖 + 𝛥𝐾𝐸 

𝐾𝐸𝑓 = (10 𝐽) + (660 𝐽) 

The value of the final kinetic energy is equal to 670 J. 

Now we can solve for the final angular velocity by using 

our rotational kinetic energy equation. 

1

2
𝐼𝜔𝑓

2 = 670 𝐽 

1

2
(5 kg · 𝑚2) 𝜔𝑓

2 = 670 𝐽 

When we solve for the final angular velocity, we see 

that it is equal to approximately 16.4 rad/s! 
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5.8 

Rotational Motion 

 

Tangential Values 

We learned that radians are equal to arc length divided 

by the radius. This means that we can find out how 

much distance an object has traveled (the arc length) 

by knowing how many radians it traveled. Hold on… if 

we know the distance the object has traveled and the 

time it took to get there… can’t we find the velocity of 

the object? But how does that work? 

Whenever an object spins about an axis, it has 

something called a tangential velocity. This is the 

velocity of the object tangential to the circular motion 

of the object and describes the rate of distance traveled.  

𝛥𝜃

𝑡
=

𝛥𝑑

𝑡𝑟
 

𝜔 =
𝑣

𝑟
 

We find that the angular velocity is equal to the 

tangential velocity divided by the radius. Now, what if 

we divide by time again to find out what the angular 

acceleration is equal to? 

𝛥𝜔

𝑡
=

𝛥𝑣

𝑡𝑟
 

𝛼 =
𝑎

𝑟
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The angular acceleration is equal to the tangential 

acceleration divided by the radius. Noticing a pattern? 

The angular value is equal to the tangential value 

divided by the radius, and this rule applies to every 

value, so long as they describe the rate of change of the 

previous one! 
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Chapter 6 

 

Simple Harmonic Motion 
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6.1 

Simple Harmonic Motion 

 

Introduction to Simple Harmonic 

Motion 

When we talk about Simple Harmonic Motion, SHM 

for short, we talk about oscillating systems. Oscillating 

means something that moves or swings back and forth 

at a constant rate. The two types of systems we will be 

talking about are mass-spring systems and pendulums. 

We have already talked about some of these systems in 

previous units so this unit will be pretty short and 

straight forward. Before we learn about the various 

equations behind SHM, we need to learn the basic 

variables and concepts behind SHM. Let’s use a mass-

spring system to demonstrate these various ideas. The 

first idea we will be talking about is Amplitude (𝐴). 

Amplitude is the maximum displacement from the 

equilibrium position. For a mass-spring system it is the 

distance a spring is stretched or compressed from its 

equilibrium (rest) position. We previously defined this 

in our Hooke’s Law equation, but we called it “x” for 

displacement, but the concept is the exact same. The 

units for amplitude would just be meters. Our next 

variable is Period (𝑇), this essentially is the value for 

the length it takes to make one complete cycle of 

motion. For a mass-spring system, it will be the time it 

takes for the mass to move from its maximum 

displacement position, back to its equilibrium position, 
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then to its minimum displacement position, back to its 

equilibrium position, and finally back to its maximum 

displacement position. The units for the period are 

seconds. Here’s a diagram to help visualize this: 

 

If we know the period (𝑇) of a system, we can find its 

frequency (𝑓). Frequency is the number of cycles per 

unit of time which would be seconds. How we find 

frequency is we find the reciprocal of the period so 

essentially; we divide 1 over the period (𝑓 =
1

𝑇
). But this 

equation works the other way as well, period is equal to 

1 over frequency (𝑓 =
1

𝑓
). The units for frequency can 

either be 1/s or Hz. Let’s use a simple example to 

understand the uses of all these variables and ideas: 

Example… A 30 kg block is attached to a spring which 

stretches a distance of 1 meter. It takes 2 seconds to 

complete half of a cycle. Find the period (T), frequency 

(f), and amplitude (A) of the mass-spring system. 
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To answer this first let’s understand what amplitude is, 

it is the maximum displacement from the equilibrium 

position. Since the block is stretched 1 meter, we can 

say that the amplitude is 1 meter. The period is the time 

it takes for one full cycle to be completed, since it takes 

2 seconds for half a cycle to be completed, we can 

deduce that it would take 4 seconds for a full cycle to be 

completed so the period would be equal to 4 seconds. 

Now since we have the period we can solve for 

frequency, which is how many cycles happen per 

second, by finding the reciprocal of the period which 

would be 1/4. This means that the frequency is equal to 

0.25 Hz or 1 cycle every 4 seconds. We can also find the 

period again since we know the frequency by finding 

the reciprocal of frequency which would be 1/0.25 

which is equal to 4 seconds as we expected. The basics 

of SHM are pretty simple but we can learn how other 

variables can affect these various parts that make up 

SHM! 
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6.2 

Simple Harmonic Motion 

 

The Mass-Spring System 

Boing... Boing… Boing… That’s the sound of a mass-

spring system oscillating from side to side. The main 

aspect to learn about in the mass-spring system is how 

the period of a mass-spring system is affected by 

different variables. Let’s think, what could change in a 

mass and a spring for its period of oscillation to 

change? Well of course we can assume the mass change 

will affect the period and also the spring constant of the 

spring. Well, the equation for the period of a mass-

spring system is almost just that! The actual equation 

is equal to 𝑇 =  2𝜋√
𝑚

𝑘
. Since we have the equation for 

the period, the frequency as we know is just the 

reciprocal of this value. There is no need to memorize 

the frequency equation as we can simply just find the 

reciprocal of the period after using the period equation. 

Again, just to recap our period equation lets us know 

the time it takes for the mass-spring system to 

complete one full oscillation from the maximum 

displacement position back to the maximum 

displacement position after going through the 

equilibrium and minimum displacement positions. 

Let’s take a look at an example: 

Example… A 1 kg mass is on a frictionless surface 

attached to a spring, compressed leftward and 
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released. If the spring constant is equal to 200 N/m 

and it has a maximum compression length of 0.1 

meters, determine the period and frequency of 

oscillation of the mass.  

To solve this question let’s utilize our new equation to 

solve for the period and later for the frequency. Once 

we plug in the known variables, we get an equation that 

looks like this: 𝑇 =  2𝜋√
(1 𝑘𝑔)

(200 𝑁/𝑚)
, this gives us a period 

of approximately 0.44 seconds. To find the frequency 

all we have to do is divide 1 by our period, 1/0.44 gives 

us a frequency of about 2.25 Hz. As we will see after 

doing more SHM questions, this unit is pretty 

straightforward and utilizes just a few basic concepts 

and equations. Let’s take a look at some examples of 

the mass-spring system… 

 

 

 

 

 

 

 

 

Example #1: Liana stretches a spring with a 2 kg mass 

attached to it on a frictionless table. If the spring has a 
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spring constant of 100 N/m, find the period and 

frequency of oscillation of the mass-spring system. 

 

 

 

 

 

Period: ____________ Seconds 

Frequency: ___________ Hz 

Example #2: Kareem has a 500 N/m spring that 

oscillates with a Frequency of 2 Hz which has an 

unknown mass attached to the end, he is currently 

looking for the mass of the unknown mass, help 

Kareem find the value of unknown mass.  

 

 

 

 

 

 

Mass of the Unknown Mass: __________ Kg 

Answer Key: 
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Question #1: To find the period and frequency of this 

mass-spring system we can simply use our period 

equation to find the period and later find the reciprocal 

of that number to find the frequency. Let’s plug in our 

knowns into our period equation, it will look something 

like this:  

𝑇 =  2𝜋√
(2 𝑘𝑔)

(100
𝑁

𝑚
)
we get a period of about 0.89 seconds. 

When we find the reciprocal of this value by dividing 1 

by 0.89, we get a value of about 1.13 Hz which would be 

the frequency.  

Question #2: This question is a little bit trickier than 

the previous question as now the frequency is given to 

us, and we are solving for one of the unknown 

variables. Let’s first solve for the period by finding the 

reciprocal of 2 Hz which would be 1/2 which is 0.5 

seconds. Now that we have that, let’s plug in the parts 

of the equation which are known so we can isolate the 

equation for the unknown which is the value of the 

unknown mass. The equation will look like this: 

0.5 𝑠 =  2𝜋√
𝑚

(500 𝑁/𝑚)
, now this question has just 

turned into a basic algebra question. Let’s isolate the 

equation for the value of “𝑚”. First, divide both sides 

by 2π, and we get 0.0796 =  √
𝑚

(500 𝑁/𝑚)
. After solving 

for the value of m, we get a value for the unknown mass 

which is equal to about 3.17 kg!  
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6.3 

Simple Harmonic Motion 

 

The Simple Pendulum 

Have you ever been on a swing at a park? A swing is 

essentially a large pendulum. In this topic, we will be 

learning about the physics of a pendulum. The period 

of a pendulum depends on many things, let’s think 

about what could affect its period. First, the length of 

the pendulum would definitely affect how long it takes 

to swing from its maximum displacement position 

back to its original position. Another thing that can 

affect it is the force that accelerates the pendulum, this 

force is of course the force of gravity. If we combine all 

these various ideas, we can get an equation for the 

period of a pendulum which is equal to 𝑇 =  2𝜋√
𝐿

𝑔
. 𝐿 in 

the equation is equal to the length of the pendulum 

arm. Of course, the frequency is the reciprocal of this 

equation just like in the mass-spring system period 

equation, so we do not need to memorize it! Let’s take 

a look at a basic example of how we can use this new 

equation.  

Example… Don wants to find the period of a simple 

pendulum with an arm length of 2 meters on Mars. The 

acceleration due to gravity on Mars is equal to                        

3.72 m/s2. Find the period of the pendulum and the 

frequency. 
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Let’s use our new equation to find the period first and 

then the frequency of this pendulum. Let’s plug in our 

known, 𝑇 =  2𝜋√
(2 𝑚)

(3.72 𝑚/𝑠2)
, if we solve for the period we 

get a value of 4.61 seconds. If we want to find the 

frequency, we will simply just divide 1 by 4.61 to get a 

value of 0.22 Hz.  

Now let’s say that Don travels to Earth and wants to see 

the new period of the pendulum.  

Let’s solve this equation by using 10 m/s2 as our gravity 

instead of 3.72 m/s2. 𝑇 =  2𝜋√
(2 𝑚)

(10 𝑚/𝑠2)
, we get a value 

of 2.81 seconds. This means that if we are on a planet 

with a stronger acceleration due to gravity, the period 

of a pendulum will be less than if we were on a planet 

with a weaker acceleration due to gravity. Let’s try 

some more questions: 
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Example #1: Brandon hops on a spaceship and heads 

for a distant planet. He wonders which planet he is on 

once he lands. Luckily, he has his trusty pendulum and 

his stopwatch. He knows the length of his pendulum is 

0.192 meters and when he measures the period he gets 

3.5 seconds. Which planet is he on? 

A) Mars - 3.72 m/s2 

 

B) Earth - 9.81 m/s2 

 

C) Pluto - 0.62 m/s2 

 

D) Jupiter - 25.7 m/s2 

 

 

Example #2: Joe wants to find the length of his 

pendulum on Jupiter which has an acceleration due to 

gravity of 25.7 m/s2, he measures the frequency of his 

pendulum as 0.25 Hz. Find the length of the pendulum.  

 

 

 

 

 

 

Length of the Pendulum: ______________ m 
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Answer Key: 

Question #1: To solve this question, we have to 

consider the parts of the equation which we already 

have, we have the length of the pendulum and the 

period. We are looking for the gravity so let’s set up our 

equation by keeping in mind that we are solving for the 

gravity or “𝑔” in the equation.  3.5 𝑠 =  2𝜋√
(0.192 𝑚)

𝑔
, 

now to solve for gravity we will first divide both sides 

of the equation by 2π, when we do that we get an 

equation that looks like this: 0.557 = √
(0.192 𝑚)

𝑔
, to get 

rid of the square root we will square both sides of the 

equation, we will get 0.31 =  
(0.192 𝑚)

𝑔
. Now we can 

multiply both sides 0.31 by 𝑔 to remove 𝑔 from the left 

side, we will get 0.31𝑔 = 0.192. Finally, if we divide 

both sides by 0.31, we get a value of 𝑔 which is about 

0.62 m/s2 which is equal to the acceleration due to 

gravity on Pluto or answer choice C. 

Question #2: To answer this question, we first have to 

solve for the period of the pendulum. We can do this by 

simply finding the reciprocal of 0.25 Hz which is equal 

to 
1

0.25
 which is equal to 4. Now that we have the period, 

let’s set up the equation with the variables we have. 

4 𝑠 =  2𝜋√
𝐿

(25.4 𝑚/𝑠2)
, since we are solving for the 

length, we have to isolate the equation for the value of 

“𝐿”. When we solve for the length, we find that the 

pendulum will have a length of 25.7 meters. 
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6.4 

Simple Harmonic Motion 

 

Energy in Simple Harmonic Motion 

When an object is oscillating, it has velocity. This 

means that energy must be present in some form in 

oscillating systems, because kinetic energy equals 
1

2
𝑚𝑣2. The types of energy which are present depend 

on the object which is oscillating. 

In mass-spring systems, there is conversion between 

kinetic energy and elastic energy. Imagine a horizontal 

spring, with one side attached to a block and the other 

side attached to a wall. If you pull the block, the elastic 

potential energy in the block-spring system will 

increase. Once you release the block, the block-spring 

system reaches its maximum potential energy. Then, 

this potential energy gets converted into kinetic energy. 

When the spring reaches its equilibrium point, there is 

no more potential energy, thus all of it is kinetic. This 

means that at the spring’s equilibrium point, the 

system has the greatest velocity. But because the block 

has inertia, it needs to keep going, compressing the 

spring causing that kinetic energy to turn back into 

elastic energy—repeating this cycle.  

Meanwhile, in a pendulum, the potential energy is 

gravitational rather than elastic. At the highest point of 

the pendulum, it has the greatest potential energy. As 

the pendulum swings to its equilibrium point, the 
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potential energy is converted to kinetic energy. At the 

equilibrium point, the kinetic energy is at its maximum 

as there is no potential energy (the equilibrium point 

for a pendulum is when it is at its lowest position). 

When the pendulum swings back up, the kinetic energy 

is converted to potential and repeats this process.  
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A Final Note 

 

Well, this is the end of the book. We both hope you 

enjoyed the way we taught these topics and learned 

something new. This book took us a long time to 

write and edit but we both know that it serves as a 

catalyst to help others learn physics and gain an 

understanding of it. We noticed many students 

throughout our years of learning physics in school 

struggling with it yet enjoying it at the very same 

time. We wanted to create a method of teaching that 

is much more relatable to students and sparks that 

interest in students while removing the difficulty of 

the subject. Thanks for reading and learning using 

our book! We hope you can spread our message and 

support us in our future endeavors. Thank you and 

continue exploring the mysteries of the universe! 

 

-Rafi and Zenel 
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